Abstract

Holographic duality is argued to relate classes of models that have equivalent unfolded formulation, hence exhibiting different space-time visualizations for the same theory. This general phenomenon is illustrated by the AdS4AdS_4 higher-spin gauge theory shown to be dual to the theory of 3d conformal currents of all spins interacting with 3d conformal higher-spin fields of Chern-Simons type. Generally, the resulting 3d boundary conformal theory is nonlinear, providing an interacting version of the 3d boundary sigma model conjectured by Klebanov and Polyakov to be dual to the AdS4AdS_4 HS theory in the large NN limit. Being a gauge theory it escapes the conditions of the theorem of Maldacena and Zhiboedov, which force a 3d boundary conformal theory to be free. Two reductions of particular higher-spin gauge theories where boundary higher-spin gauge fields decouple from the currents and which have free boundary duals are identified. Higher-spin holographic duality is also discussed for the cases of AdS3/CFT2AdS_3/CFT_2 and duality between higher-spin theories and nonrelativistic quantum mechanics. In the latter case it is shown in particular that (dSdS) AdSAdS geometry in the higher-spin setup is dual to the (inverted) harmonic potential in the quantum-mechanical setup.Comment: 57 pages, V2: Acknowledgements, references, comments, clarifications and new section on reductions of particular HS theories associated with free boundary theories are added. Typos corrected, V3. Minor corrections: clarification in section 9 is added and typos correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions