212 research outputs found

    3D tomography of cells in micro-channels

    Get PDF
    We combine confocal imaging, microfluidics and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimen, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparisons with theoretical and numerical predictions unfeasible with e.g.\ 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: `croissants' and `slippers'. Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals

    Consensus Formation in Multi-state Majority and Plurality Models

    Full text link
    We study consensus formation in interacting systems that evolve by multi-state majority rule and by plurality rule. In an update event, a group of G agents (with G odd), each endowed with an s-state spin variable, is specified. For majority rule, all group members adopt the local majority state; for plurality rule the group adopts the local plurality state. This update is repeated until a final consensus state is generally reached. In the mean field limit, the consensus time for an N-spin system increases as ln N for both majority and plurality rule, with an amplitude that depends on s and G. For finite spatial dimensions, domains undergo diffusive coarsening in majority rule when s or G is small. For larger s and G, opinions spread ballistically from the few groups with an initial local majority. For plurality rule, there is always diffusive domain coarsening toward consensus.Comment: 8 pages, 11 figures, 2-column revtex4 format. Updated version: small changes in response to referee comments. For publication in J Phys

    Opinion dynamics in a three-choice system

    Full text link
    We generalize Galam's model of opinion spreading by introducing three competing choices. At each update, the population is randomly divided in groups of three agents, whose members adopt the opinion of the local majority. In the case of a tie, the local group adopts opinion A, B or C with probabilities alpha, beta and (1-alpha-beta) respectively. We derive the associated phase diagrams and dynamics by both analytical means and simulations. Polarization is always reached within very short time scales. We point out situations in which an initially very small minority opinion can invade the whole system.Comment: To appear in European Physical Journal B. A few errors corrected, some figures redrawn from the first versio

    Mobility of an axisymmetric particle near an elastic interface

    Get PDF
    Using a fully analytical theory, we compute the leading-order corrections to the translational, rotational and translation–rotation coupling mobilities of an arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching and bending. The frequency-dependent mobility corrections are expressed as general relations involving separately the particle’s shape-dependent bulk mobility and the shape-independent parameters such as the membrane–particle distance, the particle orientation and the characteristic frequencies associated with shearing and bending of the membrane. This makes the equations applicable to an arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analytically or numerically. For a spheroidal particle, these general relations reduce to simple expressions in terms of the particle’s eccentricity. We find that the corrections to the translation–rotation coupling mobility are primarily determined by bending, whereas shearing manifests itself in a more pronounced way in the rotational mobility. We demonstrate the validity of the analytical approximations by a detailed comparison with boundary integral simulations of a truly extended spheroidal particle. They are found to be in a good agreement over the whole range of applied frequencies.A.D.-M.-I. and S.G. thank the Volkswagen Foundation for financial support and acknowledge the Gauss Center for Supercomputing e.V. for providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Center. This work has been supported by the Ministry of Science and Higher Education of Poland via the Mobility Plus Fellowship awarded to M.L. This article is based upon work from COST Action MP1305, supported by COST (European Cooperation in Science and Technology)

    Moderate inappropriately high aldosterone/NaCl constellation in mice: cardiovascular effects and the role of cardiovascular epidermal growth factor receptor

    Get PDF
    Non-physiological activation of the mineralocorticoid receptor (MR), e.g. by aldosterone under conditions of high salt intake, contributes to the pathogenesis of cardiovascular diseases, although beneficial effects of aldosterone also have been described. The epidermal growth factor receptor (EGFR) contributes to cardiovascular alterations and mediates part of the MR effects. Recently, we showed that EGFR is required for physiological homeostasis and function of heart and arteries in adult animals. We hypothesize that moderate high aldosterone/NaCl, at normal blood pressure, affects the cardiovascular system depending on cardiovascular EGFR. Therefore we performed an experimental series in male and female animals each, using a recently established mouse model with EGFR knockout in vascular smooth muscle cells and cardiomyocytes and determined the effects of a mild-high aldosterone-to-NaCl constellation on a.o. marker gene expression, heart size, systolic blood pressure, impulse conduction and heart rate. Our data show that (i) cardiac tissue of male but not of female mice is sensitive to mild aldosterone/NaCl treatment, (ii) EGFR knockout induces stronger cardiac disturbances in male as compared to female animals and (iii) mild aldosterone/NaCl treatment requires the EGFR in order to disturb cardiac tissue homeostasis whereas beneficial effects of aldosterone seem to be independent of EGFR

    Hydrodynamic coupling and rotational mobilities near planar elastic membranes

    Get PDF
    We study theoretically and numerically the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance towards shear and bending. Using a combination of the multipole expansion and Faxen's theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities, and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy

    Collapse of Non-Axisymmetric Cavities

    Get PDF
    A round disk with a harmonic disturbance impacts on a water surface and creates a non-axisymmetric cavity which collapses under the influence of hydrostatic pressure. We use disks deformed with mode m=2 to m=6. For all mode numbers we find clear evidence for a phase inversion of the cavity wall during the collapse. We present a fluid dynamics video showing high speed imaging of different modes, pointing out the characteristic features during collapse

    In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy

    Get PDF
    Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5-15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors

    Solving Optimization Problems by the Public Goods Game

    Get PDF
    This document is the Accepted Manuscript version of the following article: Marco Alberto Javarone, ‘Solving optimization problems by the public goods game’, The European Physical Journal B, 90:17, September 2017. Under embargo. Embargo end date: 18 September 2018. The final, published version is available online at doi: https://doi.org/10.1140/epjb/e2017-80346-6. Published by Springer Berlin Heidelberg.We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.Peer reviewedFinal Accepted Versio
    • …
    corecore