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Abstract

We introduce a method based on the Public Goods Game for solving optimization tasks. In

particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search

space exponentially grows increasing the number of cities. The proposed method considers a popu-

lation whose agents are provided with a random solution to the given problem. In doing so, agents

interact by playing the Public Goods Game using the fitness of their solution as currency of the

game. Notably, agents with better solutions provide higher contributions, while those with lower

ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations

show that the proposed method allows to compute exact solutions, and suboptimal ones, in the

considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimiza-

tion problems, our work aims to highlight the potentiality of evolutionary game theory beyond its

current horizons.
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Nowadays, evolutionary game theory [1–6] represents a field of growing interest in different

scientific communities, as biology [7, 8] and social science [9]. Notably, identifying strategies

and methods for triggering cooperative behaviors [10], modeling biological phenomena [11]

and studying the effects of social influences [9, 12, 13] constitute some of the major aims in

this field. On the other hand, the Darwinian concept of evolution, underlying the dynamics

of evolutionary games, represents a powerful and inspiring source also in the field of natural

computing [14]. In the last years, many evolutionary algorithms [15, 16] have been proposed

for solving optimization problems [17–19], as for instance genetic algorithms [15] and ant

colony heuristics [20]. Remarkably, optimization problems have been widely investigated

also within the realm of statistical physics [21–28], where theoretical physics and information

theory meet forming a powerful framework for studying complex systems [29, 30]. For

instance, a statistical physics mindset in combinatorial optimization problems emerges when

the set of feasible solutions, of problems like the Traveling Salesman Problem [31, 32] (TSP

hereinafter), is represented in terms of an energy landscape. In doing so, the searching of

a solution corresponds to the searching of a minimum of free energy, in a landscape whose

global minimum, i.e. the deepest valley, corresponds to the optimal solution of the problem.

Different models as the Curie-Weiss [33] and spin glasses [34, 35] have an energy that can be

studied by the Landau formulation of phase transitions [36]. These models are successfully

adopted for facing different issues as opinion dynamics [37], information retrieval [25, 38, 39],

optimization tasks [21, 40] and learning processes [25]. Using the metaphor of the energy,

heuristics like genetic algorithms [15] and swarm logics [20], implement strategies as genetic

recombination, mutation, and collective motion, for surfing the energy landscape with the

aim to reach one of the more deep valleys in few time, i.e. one of the suboptimal solutions of

a problem. Therefore, parameters as the mutation rate, used in genetic algorithms, can be

compared to physical parameters, e.g. the temperature of a system. In this work, we adopt

a mechanism based on the partial imitation [40]: when an agent interacts with another one

having a higher fitness, the former imitates a part of the latter’s solution. For example, in

the TSP, the weaker agent imitates only a part of the path traveled by a stronger opponent.

In doing so, agents are able to generate solutions over time, with the aim to achieve the

optimal one. In physical terms, a partial imitation can be interpreted as a slow cooling

process of a spin particle system, where the slowness comes from an imitative dynamics

that is only ‘partial’ (i.e. only few entries of a solution array are imitated). Our model
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considers an agent population, whose interactions are based on the Public Goods Game

(PGG hereinafter). As we know from evolutionary game theory (EGT hereinafter) [41], the

outcomes of the classical PGG are affected by a parameter defined synergy factor r, used for

supporting cooperators. Here, as shown below, this parameter (i.e. r) has a marginal role,

however what is relevant for our investigations is that an ordered phase (i.e. the prevalence

of a species in the population) can be reached by an opportune tuning of its value. Usually,

in EGT models, a species indicates a set of agents with the same strategy, e.g. cooperation,

whereas in the proposed model a species corresponds to a set of agents having the same

solution of a problem. In general, ordered phases entail all agents have the same state (or

strategy in EGT), i.e. in physical terms all spins are aligned in the same direction. Here, the

magnetization is a useful parameter that allows to measure the state of order of a system

and, in the ordered case, it has a value equal to ±1. Dealing with neural networks, and in

general with spin glasses, it is possible to introduce a gauge for the magnetization so that

its value goes to ±1 when the spin alignment (i.e. agent states) follows a particular pattern.

For instance, in the case of the TSP, a pattern can be a specific sequence of cities. The

mentioned gauge is defined Mattis magnetization [25], and it reads Mm = 1
n

∑
i εisi with εi

value in the i-th position of the pattern, si value of the spin in the same position of a signal

S of length n. As we can observe, when spins are perfectly aligned with a pattern ε, the

Mattis magnetization is equal to 1. In the proposed model, we introduce a similar approach.

In particular, each agent is provided with a random solution of the TSP (i.e. an array of

cities representing a possible solution), and the order is reached when all agents hold the

same solution. Therefore, in our case, the value of Mm is computed assigning the value of +1

when a city has the same position both in the pattern of reference (i.e. the known optimal

solution of a TSP problem), and in the solution array computed by an agent, otherwise the

value is −1. It is worth to recall that the utilization of the Mattis magnetization, as measure

for the performance of our model, can be adopted only when the optimal solution is known

in advance. Since our agents interact by the PGG, the modification of their solution occurs

during the phase of the game usually defined as ‘strategy revision phase’ [5], that in our case

is renamed as ‘solution revision phase’. Furthermore, our agents use their fitness as currency

of the game, so that their payoff depends on the quality of their solution and on those of

their opponents. We performed several numerical simulations to evaluate the quality of our

method considering the TSP as reference, i.e. a famous NP-hard problem. Results show
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that the PGG can be successfully adopted for developing new heuristics, opening the way

to investigations that cross the current fences of EGT.

I. MODEL

Before introducing the proposed model, let us recall the basic dynamics of the PGG. The

latter considers a population with N agents and two possible strategies: cooperation and

defection. Cooperators contribute to a common pool with a coin, while defectors contribute

nothing or, as in our case, provide a partial contribution (i.e. a coin whose value is lower

than that of coins provided by cooperators). Then, the total amount of coins is enhanced by

a synergy factor r (whose value is greater than 1), and the resulting value is equally divided

among all agents (no matter their strategy). In doing so, each agent receives a payoff which

reads π
c = r

∑Nc

i=1 ci
G
− c

πd = r
∑Nc

i=1 ci
G

(1)

with N c number of cooperators, G amount of agents involved in the game (i.e. size of groups

considered at each iteration that, usually, is much smaller than N), ci unitary contribution

(we can set, without loss of generality, equal for all agents, i.e. ci = c = 1), and πc and

πd payoff of cooperators and defectors, respectively. As the quantitative definition of the

payoff suggests, defection is more convenient than cooperation, and it also represents the

Nash equilibrium of this game. The role of the synergy factor r is promoting cooperation

and, as demonstrated in previous investigations, its value may strongly affect the evolution

of a population [41]. Remarkably, in square lattices, values of r smaller than 3.75 entail

all agents become defectors, whereas higher values allow cooperators to survive and even to

succeed (for r ≥ 5.49). As previously mentioned, the evolution of a population results from

the process defined ‘strategy revision phase’. Notably, after each iteration, an agent has the

opportunity to change its strategy by imitating that of a richer opponent. Here, the richness

is related to the gained payoff. In the proposed model we consider a well-mixed population,

so that agents may freely interact with their opponents. Moreover, agents are provided with

a random solution of a TSP (i.e. an array of cities). Notably, each solution is evaluated by

a fitness η computed as follows

η =
Z − 1

D
(2)

4



with Z number of cities, and D total distance of a path. In doing so, the fitness has a range

η ∈ [0, 1]. At each time step, one agent is randomly selected (say the xth) and plays the

PGG with 4 (randomly chosen) opponents, forming a group with G = 5 agents. Now, every

agent of the group contributes with its fitness; then, as in the PGG, the total summation

of contributions is enhanced by a synergy factor r and, finally, equally distributed among

all agents of the group. It is worth noting that, in the proposed model, all agents always

contribute. However, some agents provide a contribution higher/smaller than that of others.

Therefore, ’below average contributors’ (i.e. those having a low quality solution) can be

considered as defectors [42]. According to this setting, the payoff reduces to one equation

πx = r

∑5
i=1 ηi
G

− ηx (3)

with πx indicating the payoff of the xth agent, and ηx its fitness (i.e. that corresponding

to its solution). Finally, the ‘strategy revision phase’, in our model, is renamed ‘solution

revision phase’: the randomly selected agent computes the probability Πs to modify each

entry of its solution by imitating that of its best opponent (if exists)

Πs =
1

1 + e
ηx−πx
K

(4)

As in the PGG, K represents the uncertainty in imitating an opponent (i.e. plays the role of

temperature). Hence, setting K = 0.5 we implement a rational approach during the revision

phase [41]. Therefore, the xth agent imitates with probability Πs each entry of the solution

of its best opponent, if the latter has a greater or, at least, an equal fitness (otherwise the xth

agent does not revise its solution). Summarizing, given a TSP, we define a population whose

agents at the beginning receive a random solution of the problem. Then, local interactions,

based on the PGG, allow the population to converge towards a shared solution. From a

local point of view, at each time step, a randomly selected agent (say x) plays the PGG with

4 (randomly chosen) opponents, and computes its payoff (i.e. by Eq.( 3)). So, according

to its fitness ηx and to the gained payoff πx, the xth agent computes the probability Πs to

imitate the solution of its best opponent (say y, if exists). In particular, if ηy ≥ ηx, the xth

agent revises its solution, i.e. it imitates each entry of the solution of the yth agent with

probability Πs (i.e. each entry is modified according to Πs). The whole process is repeated

until the population reaches an ordered phase (i.e. all agent share the same solution), or up

to a limited number of time steps elapsed. It is worth observing that as Πs goes to 1, the
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imitation process entails one agent tends to copy the whole solution of its best opponent.

In addition, we remark that when an agent performs a ’partial imitation’, for instance to

modify one city along its path, the same city cannot be visited twice (i.e. it can be present

in only one cell of the solution array). In order to clarify this point we provide a simple

example. Let us consider an agent having the following solution: [ Paris, New York, London,

Miami, Rome, Madrid ], that has to put in the third cell (now containing London) the

city of Rome. Since currently Rome is in the fifth cell, the algorithm swaps the values for

the third and fifth cells so that, after the whole process, the resulting array is: [ Paris,

New York, Rome, Miami, London, Madrid ]. Thus, repetitions are completely avoided, and

all solutions generated according to the proposed heuristic are suitable solutions. Finally,

we deem relevant to emphasize the main differences between the PGG and the proposed

model. First, in our model, the contributions provided by the agents correspond to their

fitness, while in the PGG contributions just represent forms of cooperation to a common

wealth. Second, the ’strategy revision phase’ of the PGG, here renamed ’solution revision

phase’, entails an imitation process between two agents that can be complete or only partial.

Moreover, the imitation probability (i.e. 4) takes as input the payoff and the fitness of the

same agent, i.e. the one that undergoes the revision process. Finally, a further important

difference, between the PGG and the proposed model, is given by the number of possible

ordered equilibria. Notably, in the PGG, the possible ordered phases can correspond to full

cooperation, or full defection. Instead, in the proposed model, each suitable solution of a

combinatorial optimization problem can be an ordered equilibrium that the population can

reach.

II. RESULTS

Numerical simulations have been performed considering a number of cities up to Z = 50

for defining the TSP. Agents know the starting city and the landing one so, since each city

can be visited only once, the number of feasible solutions is (Z− 2)!. Moreover, without loss

of generality, we consider that the distance between two close cities is always equal to one

—see Fig. 1. Eventually, we set the synergy factor to r = 2. We remind that in the present

work we are not interested in studying phenomena as the evolution of cooperation, but we

aim to evaluate if agents are able to converge towards an ordered phase, characterized by the
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FIG. 1. General setting of the TSP considering Z = 6 cities forming a complete graph. Each node

represents a city, and some distances are reported in blue, close to the related link. Then, the best

solution is shown. Green nodes represent the starting and the landing ones.

existence of only one shared solution of a problem. Thus, the choice of setting r = 2 reflects

this requirement, i.e. to use a value that in the PGG leads to an ordered phase (i.e. full

defection in the specific case). As illustrated in Fig. 2, the ergodicity of the process always

allows agents to converge to one common solution. Moreover, we are able to verify the quality

of solutions both considering the related fitness and the Mattis magnetization (see the inset

of Fig. 2). In particular, the latter can be used when the solution of a problem is known in

advance (as in our case). An important relation to be considered is the one defined between

FIG. 2. Number of solutions over time in a population of N = 900 agents while solving a TSP with

10 cities (blue dotted line) and 20 cities (red line). The inset shows the related Mattis magnetization

for the two cases (both successful). Results have been averaged over 100 different attempts.

the final average fitness and the size of the population N , studied on varying the amount of
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cities Z —see plot a of Fig. 3. Moreover, as shown in plot b of Fig. 3, it is worth noting that

FIG. 3. a) Average fitness of the final solution in function of N (i.e. the number of agents), for

different values of Z (i.e. the number of cities). b) Average fitness of the final solution on varying

the number of cities, for different agents N . Results have been averaged over 100 different attempts.

also good suboptimal solutions may be computed using a number of agents N smaller than

that required to compute the optimal one. As expected, increasing Z the average value of

η reduces (keeping fixed the number of agents N). On the other hand, as shown in Fig. 4,

it is worth highlighting that it is possible to find an opportune N for each considered Z in

order to achieve the highest fitness (i.e. η = 1). We deem relevant to note that the number

of agents to compute the best solution, i.e. N(η = 1), is much smaller than the number of

feasible solutions for each problem, therefore our method can be considered a viable heuristic

for facing combinatorial optimization problems. Eventually, we focused on the number of
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FIG. 4. Minimum number of agents to compute the optimal solution of a TSP on varying the

number of cities Z. Results have been averaged over 100 different attempts.

time steps to let the population converge, considering in particular the successful cases, i.e.

those leading to the optimal solution —see Fig. 5. As expected, wide search spaces (e.g.

Z = 50) require more time steps to let the population converge to the same final (and

optimal) solution. Furthermore, increasing N and keeping fixed Z, the number of time steps

T increases accordingly. These results are in full agreement with converging processes that

can be observed in generic agent-based models, e.g. increasing the size of a population the

number of time steps, required to let agents converge towards the same state, increases [43].

FIG. 5. Number time steps required for converging to the final (optimal) state on varying Z, for

different population sizes N . Results have been averaged over 100 different attempts.
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III. DISCUSSION AND CONCLUSION

In this work we show that evolutionary games as the PGG can be, in principle, applied

also for solving combinatorial optimization problems. In particular, the order-disorder phase

transition occurring in a population interacting by the PGG can be adopted for letting the

population converge towards a common solution of a problem. Notably, a solution plays the

same role of a strategy in the classical PGG, and the order is reached by implementing a

mechanism of ‘partial imitation’ [40]. The latter allows agents with a weak solution to par-

tially imitate stronger (i.e. richer) opponents. From a physical perspective, this mechanism

can be viewed as a slow cooling process that triggers the emergence of solutions over time,

whereas the ergodicity of the process allows the population to reach an absorbing state of

full order. In doing so, an ordered phase entails all agents share the same solution. Under

the hypothesis that an evolutionary dynamics driven by the payoff, i.e. rational, may con-

stitute the base for solving difficult problems as the TSP, we performed several numerical

simulations by considering a well-mixed population. Although we implemented a simplified

version of the TSP, with a limited number of cities, it is worth highlighting that results

indicate that the proposed model allows to compute the optimal solution in all considered

search spaces. Moreover, even using a reduced number of agents, it is possible to compute a

good suboptimal solution. Furthermore, we note that even introducing spatial constraints in

the TSP (e.g. a missing link between two cities), the algorithm is able to face the problem,

once the driveability of the graph is known (as shown in Fig. 1). Therefore, in the light

of the achieved outcomes, we deem relevant to further investigate the potential of evolu-

tionary games in optimization problems, then enlarging the domain of applications of EGT.

However, it is important to emphasize that in order to really appreciate the quality of the

proposed model as algorithm for solving the TSP, further investigations are required. In par-

ticular, those for comparing the performances with other heuristics, as genetic algorithms

(see Appendix I). On the other hand, we remark that our results indicate a clear relation

between the size of a population and the complexity of the faced problem. This last obser-

vation constitutes a first, even if theoretical, advantage of our method respect to the others

because, as far as we know, similar relations are not available for other methods. Now, from

the point of view of EGT, there are two important observations. First, the synergy factor

has a marginal role in the proposed model. We recall that, for the aims of our work, we
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are interested in allowing the population to converge towards an ordered state. On studying

the PGG, the synergy factor is fundamental because, as before mentioned, some values may

lead a population towards a steady-state of coexistence between cooperators and defectors.

Therefore, since here we have to avoid similar scenarios, in principle, every value of the syn-

ergy factor that supports a generic state of full order can be adopted. At the same time, we

think that the synergy factor should not be too high, otherwise it might generate problems

when computing transition probabilities during the ’solution revision phase’. In particular,

as indicated in Eq.( 4), the fitness and the payoff are compared when evaluating whether

one agent has to change its strategy. Thus, we suggest to use small values, like the one we

adopted (i.e. r = 2). The second observation is related to the identification of defectors.

Notably, here we refer to the PGG, i.e. a simple game with two strategies: cooperation and

defection. In the classical version, cooperators contribute with a coin, while defectors do not

contribute. However, as reported in [42], when the amount of contributions is not set to a

specific value (e.g. a coin of unitary value), those agents that contribute with a below-average

contribution can be considered as defectors. To conclude, the proposed heuristic shows that

cooperative dynamics, leading from disordered to ordered states, may constitute the basic

mechanism for implementing optimization algorithms.
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APPENDIX I

Here, we report results of a comparative analysis between the proposed method and two

other heuristics: genetic algorithms [16] and social imitation [40]. The former constitutes

one of the most famous methods adopted in combinatorial optimization problems, while the

second allows to evaluate the differences between the proposed strategy and one based on a

simple imitative mechanism (based on the fitness). Before to show a comparative table, we

briefly summarize how the social imitation strategy works, and how the genetic algorithm has

been implemented. Let us start with the social imitation algorithm, implemented according

to the following steps:

1. Define a population with N agents, and assign each one a random solution for the

considered TSP;

2. Compute the fitness η of each agent (i.e. the goodness of its solution);

3. Compute the number of different solutions (say K) in the population;

4. IF K > 1:

(i) randomly select two agents (x and y) having different solutions:

IF ηx ≤ ηy perform a Solution Revision Phase (see below);

ELSE REPEAT from (i).

(ii) REPEAT from (3);

ELSE STOP.

The Solution Revision Phase is composed of the following steps

a Randomly select a position, say z, (i.e. an entry in the solution array) of the x-th agent’s

solution;

b Check that the value in z be different between the two selected agents, otherwise repeat

from (a);

c Compute the position, say w, in the x-th agent’s solution containing the value in position

z of the y-th agent’s solution;

12



d Exchange in the x-th agent’s solution the values contained in positions z and w.

Genetic Algorithms can be implemented in several ways. In this work, we consider a

simple definition:

1. Define a population with N genes, assign each one a random solution for the considered

TSP, and define a maximum number of iterations I;

2. While the best fitness in the population is smaller than 1, or the number of iterations

is smaller than I:

3. Compute the fitness η of each gene (i.e. the goodness of its solution);

4. Select the best half of the population according to fitness;

5. Generate two new solutions for each couple of genes, defined among the set computed

at the previous step;

6. Apply the random mutation, to each gene, with probability pm;

We set to 0.1 the probability pm (i.e. the random mutation), and to 30k the maximum

number of iterations I. In addition, we emphasize that the crossover operator has been

defined by cutting each gene parent (i.e. solution) in two different points, so generating an

offspring by using the central part of one parent and the side parts of the other parent. In

the case this process generates not viable solutions (e.g. in the presence of repetitions), the

duplicates are removed for adding the missing cities. Table I shows the number of agents (or

genes for the genetic algorithm) for computing the optimal solution on varying the number

of cities, the average number of time steps required to complete a simulation and, when

smaller than 1, the average fitness.

According to these results, we observe that the proposed method requires the highest

number of agents to solve a TSP. However, if compared to the SI algorithm, our approach

is much more faster (see the average number of time steps < T >) than SI. Therefore, this

result seems to suggest that combining the ’game mechanism’ in an imitation process makes

sense for solving optimization problems. The genetic algorithm is the one that required

the smallest number of agents, and the smallest amount of time to complete a simulation.

At the same time, it is important to observe that the genetic algorithm has a synchronous

13



TABLE I. Performance comparison on varying the number of cities (Z): proposed method (PGG),

Social Imitation (SI), and Genetic Algorithm (GA). N indicates the minimum number of agents

(genes for GA) used to solve the problem, and < T > indicates the average number of time steps

required. The average fitness < η > is indicated only when smaller than 1, although the best value

computed considering all attempts is 1 (i.e. the optimal solution has not been always computed).

Z PGG SI GA

10 N = 100 | < T >= 1K N = 60 | < T >= 8K N = 100 | < T >= 27

15 N = 900 | < T >= 17K N = 100 | < T >= 40K N = 100 | < T >= 200

20 N = 900 | < T >= 29K N = 270 | < T >=

500K

N = 100 | < T >= 1.3k

25 N = 4900 | < T >=

277K

N = 500 | < T >=

1.5M

N = 100 | < T >= 4.1k

30 N = 4900 | < T >=

500K

N = 700 | < T >=

5.5M

N = 100 | < T >=

13.2k

35 N = 4900 | < T >=

820K

N = 1000 | < T >=

15.5M

N = 100 | < T >=

17.5k

40 N = 10000 | < T >=

3M

N = 1200 | < T >=

40M

N = 200 | < T >= 23k

| < η >= 0.76

50 N = 22500 | < T >=

21M

N = 1600 | < T >=

360M

N = 200 | < T >=

28.5k | < η >= 0.61

dynamics (while our method and SI are asynchronous), i.e. during the same time step, all

agents are involved for generating offsprings and updating their solution (according to the

random mutation mechanism). Therefore, further analyses are required for a complete time

comparison. However, it seems that the genetic algorithm is the fastest one. Nevertheless we

found that, considering 20 different simulation runs, the average fitness of the best solution

(found in the gene population) is smaller than 1 when Z ≥ 40. Hence, the genetic algorithm

must be run several time for each task, saving the best solution. To conclude, according to

this analysis, we report that a genetic algorithm constitutes the best choice for solving simple

problems (i.e. with few cities), or for computing in few time a good suboptimal solution with

many cities. On the other hand, when the number of cities increases, the proposed method
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allows to reach a higher fitness in a number of attempts smaller than that required by a

genetic algorithm, and to compute the optimal solution within a number of time steps much

more smaller than that required by the social imitation strategy.

[1] Nowak, M.A. and May, R.M.: Evolutionary games and spatial chaos. Nature 359 826–829

(1992)

[2] Perc, M., Grigolini, P.: Collective behavior and evolutionary games An introduction. Chaos,

Solitons & Fractals 56 15 (2013)

[3] Julia, PC, Gomez-Gardenes, J., Traulsen, A., and Moreno, Y.: Evolutionary game dynamics

in a growing structured population. New Journal of Physics 11 083031 (2009)

[4] Floria, L.M., Gracia-Lazaro, C., Gomez-Gardenes, J., and Moreno, Y.: Social network reci-

procity as a phase transition in evolutionary cooperation. Phys. Rev. E 79 026106 (2009)

[5] Tomassini, M.: Introduction to evolutionary game theory. Proc. Conf. on Genetic and evolu-

tionary computation companion (2014)

[6] Perc, M., et al.: Evolutionary dynamics of group interactions on structured populations: a

review. J. R. Soc. Interface 10-80 20120997 (2013)

[7] Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University

Press (2006)

[8] Traulsen, A., Reed, F.A.: From genes to games: cooperation and cyclic dominance in meiotic

drive. Journal of theoretical biology 299 120-125 (2012)

[9] Perc, M., Szolnoki, A.: Social diversity and promotion of cooperation in the spatial prisoner’s

dilemma. Phys. Rev. E 77 011904 (2008)

[10] Nowak, M.A.: Five rules for the evolution of cooperation. Science 314-5805 1560–1563 (2006)

[11] Fu, F., Rosenbloom, D.I. Wang, L., Nowak, M.A.: Imitation dynamics of vaccination behaviour

on social networks. Proc. R. Soc. B 278 42–49 (2011)

[12] Masuda, N.: Evolution of cooperation driven by zealots. Scientific Reports 2 (2012)

[13] Javarone, M.A., Antonioni, A., Caravelli, F.: Conformity-Driven Agents Support Ordered

Phases in the Spatial Public Goods Game. EPL 114-3 38001 (2016)

[14] de Castro, L.N.: Fundamentals of natural computing: an overview. Physics of Life Reviews

4-1 1–36 (2007)

15



[15] Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press

(1975)

[16] Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Machine

Learning 2 (1989)

[17] Krentel, M.W.: The complexity of optimization problems. Proceedings of the eighteenth annual

ACM symposium on Theory of computing 69–76 (1986)

[18] Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Sci-

ence 344-2 243–278 (2005)

[19] Kellerer, H., Pferschy, U., Pisinger, D.: Introduction to NP-Completeness of Knapsack Prob-

lems. springer (2004)

[20] Dorigo, M., Caro, G., Gambardella, L.M.: Ant Algorithms for Discrete Optimization. Artificial

Life 5–2 (1999)

[21] Baldassi, C., Braunstein, A., Ramezanpour, A., Zecchina, R.: Statistical Physics and Net-

work Optimization Problems. Mathematical Foundations of Complex Networked Information

Systems 27–49 (2015)

[22] Altarelli, F., Braunstein, A., Ramezanpour, A., Zecchina, R.: Stochastic optimization by

message passing. JSTAT 11 P11009 (2011)

[23] Zdeborova, L., Krzakala, F.: Statistical physics of inference: Thresholds and algorithms.

arxiv:1511.02476 (2015)

[24] Jorg, T., Krzakala, F., Semerjian, G., Zamponi, F.: First-order transitions and the perfor-

mance of quantum algorithms in random optimization problems. Phys Rev Lett 104-20 207206

(2010)

[25] Amit, D.: Modeling Brain Function. Cambridge Univ. Press (1989)

[26] Hopfield, J.J., Tank, D.W.: Neural Computation of Decisions in Optimization Problems.

Biological Cybernetics 52 141-152 (1985)

[27] Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. Journal of Sta-

tistical Physics 34-5 975-986 (1983)

[28] Vannimenus, J., Mezard, M.: On the statistical mechanics of optimization problems of the

traveling salesman type. J. Physique Lett. 45-24 (1984)

[29] Anderson, P.W.: More is different. Science 177 393–396 (1972)

16



[30] San Miguel, M., et al.: Challenges in complex systems science. The European Physical Journal

Special Topics 214-1 245–271 (2012)

[31] Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the

traveling salesman problem. IEEE, Evolutionary Computation 53–66 (1997)

[32] Bellingeri, M., Agliari, A., Cassi, D.: Optimization strategies with resource scarcity: From

immunization of networks to the traveling salesman problem. Modern Physics Letters B 29-

29 (2015)

[33] Kochmanski, M., Paszkiewicz, T., and Wolski, S.: CurieWeiss magneta simple model of phase

transition Statistical Mechanics. European Journal of Physics 34 1555 (2013)

[34] Mezard, M., Parisi, G., Virasoro, M.A.: Spin glass theory and beyond. World Scientific Pub-

lishing (1990)

[35] Franz, S.,et al.: Quantitative field theory of the glass transition. PNAS 109-46 18725–18730

(2012)

[36] Huang, K.: Statistical Mechanics. Wiley 2nd Ed. (1987)

[37] Gekle, S., Peliti, L., Galam, S.: Opinion Dynamics in a three-choice system. The European

Physical Journal - B 45-4 569-575 (2005)

[38] Barra, A., Del Ferraro, G., Tantari, D.: Mean-field spin-glasses treated with PDE techniques.

EPJ-B 86-332 (2013)

[39] E. Agliari, et al.: Hierarchical neural networks perform both serial and parallel processing.

Neural Networks 66 22–35 (2015)

[40] Javarone, M.A.: An Evolutionary Strategy based on Partial Imitation for Solving Optimization

Problems. Physica A: Statistical Mechanics and its Applications 463 262269 (2016)

[41] Szolnoki, and Perc, M.: Reward and cooperation in the spatial Public Goods Game. EPL 92

38003 (2010)

[42] Fehr, E., Gachter, S.: Altruistic punishment in humans Nature 415 137–140 (2002)

[43] Sood, V., and Redner, S.: Voter Model on Heterogeneous Graphs. Phys Rev. Lett 94 178701

(2005)

17


	UHRA full text deposit cover AAM version TEMPLATE.pdf
	main.pdf
	Solving Optimization Problems by the Public Goods Game
	Abstract
	Model
	Results
	Discussion and Conclusion
	Acknowledgments
	Author contribution statement
	Appendix I
	References



