1,489 research outputs found
Equilibrium free energies from fast-switching trajectories with large time steps
Jarzynski's identity for the free energy difference between two equilibrium
states can be viewed as a special case of a more general procedure based on
phase space mappings. Solving a system's equation of motion by approximate
means generates a mapping that is perfectly valid for this purpose, regardless
of how closely the solution mimics true time evolution. We exploit this fact,
using crudely dynamical trajectories to compute free energy differences that
are in principle exact. Numerical simulations show that Newton's equation can
be discretized to low order over very large time steps (limited only by the
computer's ability to represent resulting values of dynamical variables)
without sacrificing thermodynamic accuracy. For computing the reversible work
required to move a particle through a dense liquid, these calculations are more
efficient than conventional fast switching simulations by more than an order of
magnitude. We also explore consequences of the phase space mapping perspective
for systems at equilibrium, deriving an exact expression for the statistics of
energy fluctuations in simulated conservative systems
A mineralized zone in Western Candor Chasma, Mars
Spectral evidence from Viking and Phobos orbiting spacecraft suggests the local development of crystalline ferric oxides in a small region within Mars' equatorial Valles Marineris canyon system. This is the same area noted for its anomalous coloration in Viking Orbiter image 583 A by McEwen. The unique hue of the region in Viking color data is due to a reduced green filter reflectance, relative to violet and red, in comparison to surrounding materials of similar albedo or average reflectance. For this reason, the region does not appear spectrally distinctive in later Survey Mission images which were acquired without the green filter. In high resolution, the spectral unit can be seen to correspond to two 20 km long depressions on the margins of Candor Mensa, a heavily eroded plateau-forming deposit on the canyon floor. Laminae are conspicuous in several places on the plateau, particularly where 15 to 20 cycles of alternating bright and dark laminae are exposed at approximately 200 meter vertical intervals. Laminae are also visible on the steep, vertically fluted cliffs to the south of this depression. Concentric laminae indicate a basis in the depression on the southeastern margin of Candor Mensa at the location of the less pronounced hue anomaly. A distinct lineation at the base of the scarp at the western end of the canyon transects mottled canyon floor deposits believed to be among the youngest in the Valles marineris. Water is implicated in the formation of the iron oxides, since the steep surfaces of layered sediments elsewhere on Candor Mensa show no evidence of unusual coloration despite the fact that these materials were deposited concurrently with the strata exposed in the depressions. This suggests that the mineralization is secondary in nature and developed locally in association with the depressions, which could have ponded surface runoff or groundwater seepage
Transferable Pair Potentials for CdS and ZnS Crystals
A set of interatomic pair potentials is developed for CdS and ZnS crystals.
We show that a simple energy function, which has been used to describe the
properties of CdSe [J. Chem. Phys. 116, 258 (2002)], can be parametrized to
accurately describe the lattice and elastic constants, and phonon dispersion
relations of bulk CdS and ZnS in the wurtzite and rocksalt crystal structures.
The predicted coexistence pressure of the wurtzite and rocksalt structures, as
well as the equation of state are in good agreement with experimental
observations. These new pair potentials enable the study of a wide range of
processes in bulk and nanocrystalline II-VI semiconductor materials
Meteorologic parameters analysis above Dome C made with ECMWF data
In this paper we present the characterization of all the principal
meteorological parameters (wind speed and direction, pressure, absolute and
potential temperature) extended over 25 km from the ground and over two years
(2003 and 2004) above the Antarctic site of Dome C. The data set is composed by
'analyses' provided by the General Circulation Model (GCM) of the European
Center for Medium Weather Forecasts (ECMWF) and they are part of the catalog
MARS. A monthly and seasonal (summer and winter time) statistical analysis of
the results is presented. The Richardson number is calculated for each month of
the year over 25 km to study the stability/instability of the atmosphere. This
permits us to trace a map indicating where and when the optical turbulence has
the highest probability to be triggered on the whole troposphere, tropopause
and stratosphere. We finally try to predict the best expected isoplanatic angle
and wavefront coherence time employing the Richardson number maps, the wind
speed profiles and simple analytical models of CN2 vertical profiles.Comment: 28 pages, 14 figures, pdf file, to be published on July 2006 - PASP,
see also http://www.arcetri.astro.it/~masciad
Earth imaging results from Galileo's second encounter
The recent flyby of the Galileo spacecraft en route to Jupiter contributes a unique perspective to our view of our home planet. Imaging activities conducted during the second Earth encounter provide an important opportunity to assess new methods and approaches on familiar territory. These include unique multispectral observations, low light-level imaging (searches for aurorae, lightning and artificial lights on the nightside) and experiments with multiple exposure times to extend the effective radiometric resolution and dynamic range of the camera system. Galileo imaging data has the potential to make important contributions to terrestrial remote sensing. This is because the particular set of filters included in the Solid State Imaging system are not presently incorporated in any currently operating Earth-orbiting sensor system. The visible/near-infrared bandpasses of the SSI filters are well suited to remote sensing of geological, glaciological, botanical, and meteorological phenomena. Data from this and the previous Earth encounter may provide an extremely valuable reference point in time for comparison with similar data expected from EOS or other systems in the future, contributing directly to our knowledge of global change. The highest resolution imaging (0.2 km/pixel) during the December, 1992 encounter occurred over the central Andes; a five filter mosaic of visible and near infrared bands displays the remarkable spectral heterogeneity of this geologically diverse region. As Galileo departed the Earth, cooperative imaging with the Near Infrared Mapping Spectrometer (NIMS) instrument targeted Antarctica, Australia, and Indonesia at 1.0 to 2.5 km/pixel resolutions in the early morning local times near the terminator. The Antarctic data are of particular interest, potentially allowing ice grain size mapping using the 889 and 968 nm filters and providing an important means of calibrating the technique for application to the Galilean satellites. As the spacecraft receded further, regional scale imaging provided data which, along with data from the previous encounter, will enable the production of global multispectral mosaics of Earth in each of the SSI filters
Action-derived molecular dynamics in the study of rare events
We present a practical method to generate classical trajectories with fixed
initial and final boundary conditions. Our method is based on the minimization
of a suitably defined discretized action. The method finds its most natural
application in the study of rare events. Its capabilities are illustrated by
non-trivial examples. The algorithm lends itself to straightforward
parallelization, and when combined with molecular dynamics (MD) it promises to
offer a powerful tool for the study of chemical reactions.Comment: 7 Pages, 4 Figures (3 in color), submitted to Phys. Rev. Let
Rare behavior of growth processes via umbrella sampling of trajectories
We compute probability distributions of trajectory observables for reversible and irreversible growth processes. These results reveal a correspondence between reversible and irreversible processes, at particular points in parameter space, in terms of their typical and atypical trajectories. Thus key features of growth processes can be insensitive to the precise form of the rate constants used to generate them, recalling the insensitivity to microscopic details of certain equilibrium behavior. We obtained these results using a sampling method, inspired by the “s-ensemble” large-deviation formalism, that amounts to umbrella sampling in trajectory space. The method is a simple variant of existing approaches, and applies to ensembles of trajectories controlled by the total number of events. It can be used to determine large-deviation rate functions for trajectory observables in or out of equilibrium
Recommended from our members
Looking into the future, what do we see?
This series of short communications introduces and celebrates the occasion of World Nutrition Rio2012, and looks ahead. There will be another series published next month in our May issue, which will be on-line early, at 0001 GMT on Thursday 26 April, the day before Rio2012 begins.
The questions and answers: Our contributors, this month and next month, have been asked to write within a standard framework, based on their knowledge and experience, in a style comparable with those of the news and comment sections of journals concerned with public health. Their contributions are judgements, as any policy statements are and must be. The first question is about Rio2012 itself. The second question is addressed to young colleagues. All the questions are designed to look forward and to advise, warn and encourage.
What do I hope Rio2012 will achieve?
My advice to a young public health nutritionist
When I am optimistic, what is my vision?
When I am pessimistic, what do I foresee?
My most highly recommended writer
One choice of my own publication
- …