69 research outputs found

    On the Navier-Stokes equations with rotating effect and prescribed outflow velocity

    Full text link
    We consider the equations of Navier-Stokes modeling viscous fluid flow past a moving or rotating obstacle in Rd\mathbb{R}^d subject to a prescribed velocity condition at infinity. In contrast to previously known results, where the prescribed velocity vector is assumed to be parallel to the axis of rotation, in this paper we are interested in a general outflow velocity. In order to use LpL^p-techniques we introduce a new coordinate system, in which we obtain a non-autonomous partial differential equation with an unbounded drift term. We prove that the linearized problem in Rd\mathbb{R}^d is solved by an evolution system on Lσp(Rd)L^p_{\sigma}(\mathbb{R}^d) for 1<p<∞1<p<\infty. For this we use results about time-dependent Ornstein-Uhlenbeck operators. Finally, we prove, for p≄dp\geq d and initial data u0∈Lσp(Rd)u_0\in L^p_{\sigma}(\mathbb{R}^d), the existence of a unique mild solution to the full Navier-Stokes system.Comment: 18 pages, to appear in J. Math. Fluid Mech. (published online first

    Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    Get PDF
    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation

    Adjoint bi-continuous semigroups and semigroups on the space of measures

    Get PDF
    For a given bi-continuous semigroup T on a Banach space X we define its adjoint on an appropriate closed subspace X^o of the norm dual X'. Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology (X^o,X). An application is the following: For K a Polish space we consider operator semigroups on the space C(K) of bounded, continuous functions (endowed with the compact-open topology) and on the space M(K) of bounded Baire measures (endowed with the weak*-topology). We show that bi-continuous semigroups on M(K) are precisely those that are adjoints of a bi-continuous semigroups on C(K). We also prove that the class of bi-continuous semigroups on C(K) with respect to the compact-open topology coincides with the class of equicontinuous semigroups with respect to the strict topology. In general, if K is not Polish space this is not the case

    Error estimates for the discretization of the velocity tracking problem

    Get PDF
    In this paper we are continuing our work (Casas and Chrysafinos, SIAM J Numer Anal 50(5):2281–2306, 2012), concerning a priori error estimates for the velocity tracking of two-dimensional evolutionary Navier–Stokes flows. The controls are of distributed type, and subject to point-wise control constraints. The discretization scheme of the state and adjoint equations is based on a discontinuous time-stepping scheme (in time) combined with conforming finite elements (in space) for the velocity and pressure. Provided that the time and space discretization parameters, t and h respectively, satisfy t = Ch2, error estimates of order O(h2) and O(h 3/2 – 2/p ) with p > 3 depending on the regularity of the target and the initial velocity, are proved for the difference between the locally optimal controls and their discrete approximations, when the controls are discretized by the variational discretization approach and by using piecewise-linear functions in space respectively. Both results are based on new duality arguments for the evolutionary Navier–Stokes equations
    • 

    corecore