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Lp-THEORY OF THE NAVIER-STOKES FLOW IN THE
EXTERIOR OF A MOVING OR ROTATING OBSTACLE

M. GEISSERT and M. HIEBER

Abstract. In this paper we describe two recent approaches for the Lp-theory of
the Navier-Stokes flow in the exterior of a moving or rotating obstacle.

1. Introduction

Consider a compact set O ⊂ R
n, the obstacle, with boundary Γ := ∂O of class

C1,1. Set Ω := R
n\O. For t > 0 and a real n × n-matrix M we set

Ω(t) := {y(t) = etMx, x ∈ Ω} and Γ(t) := {y(t) = etMx, x ∈ Γ}.
Then the motion past the moving obstacle O is governed by the equations of

Navier-Stokes given by

∂tw − ∆w + w · ∇w + ∇q = 0, in Ω(t) × R+,
∇ · w = 0, in Ω(t) × R+,

w(y, t) = My, on Γ(t) × R+,
w(y, 0) = w0(y), in Ω.

(1)

Here w = w(y, t) and q(y, t) denote the velocity and the pressure of the fluid,
respectively. The boundary condition on Γ(t) is the usual no-slip boundary condi-
tion. Quite a few articles recently dealt with the equation above, see [2], [3], [4],
[5], [6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the Lp-
setting where 1 < p < ∞. The basic idea for both approaches is to transfer
the problem given on a domain Ω(t) depending on t to a fixed domain. The
first transformation described in the following Section 2 yields additional terms
in the equations which are of Ornstein-Uhlenbeck type. We shortly describe the
techniques used in [15] and [12] in order to construct a local mild solution of (1).

In contrast to the first transformation, the second one, inspired by [17] and [6],
allows to invoke maximal Lp-estimates for the classical Stokes operator in exterior
domains and like this we obtain a unique strong solution to (1). This approach is
described in section 3.
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2. Mild solutions

In this section we construct mild solutions to the Navier-Stokes problem (1). To
do this we first transform the equations (1) to a fixed domain. Let Ω, Ω(t) and
Γ(t) be as in the introduction and suppose that M is unitary. Then by the change
of variables x = e−tMy and by setting v(x, t) = e−tMw(etMx, t) and p(x, t) =
q(etMx, t) we obtain the following set of equations defined on the fixed domain Ω:

∂tv − ∆v + v · ∇v − Mx · ∇v + Mv + ∇p = 0, in Ω × R+,
∇ · v = 0, in Ω × R+,

v(x, t) = Mx, on Γ × R+,
v(x, 0) = w0(x), in Ω.

(2)

Note that the coefficient of the convection term Mx · ∇u is unbounded, which
implies that this term cannot be treated as a perturbation of the Stokes operator.

This problem was first considered by Hishida in L2
σ(Ω) for Ω ⊂ R

3 and Mx =
ω × x with ω = (0, 0, 1)T in [15] and [16]. The Lp-theory was developed by Heck
and the authors in [12] even for general M .

We will construct mild solutions for w0 ∈ Lp
σ(Ω), p ≥ n, to the problem (2)

with Kato’s iteration (see [18]).
The starting point is the linear problem

∂tu − ∆u − Mx · ∇u + Mu + b · ∇u + u · ∇b + ∇p = 0, in Ω × R+,
∇ · u = 0, in Ω × R+,

u = 0, on Γ × R+,
u(x, 0) = w0(x), in Ω,

(3)

where b ∈ C∞
c (Ω). The additional term b · ∇u + u · ∇b simplifies the treatment of

the Navier-Stokes problem (see (11) below). We will first show that the solution
of (3) is governed by a C0-semigroup on Lp

σ(Ω). More precisely, let LΩ,b be defined
by

LΩ,bu := PΩLbu

D(LΩ,b) := {u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) ∩ Lp

σ(Ω) : Mx · ∇u ∈ Lp(Ω)},
where Lbu := ∆u + Mx · ∇u−Mu + b · ∇u + u · ∇b. Then the following theorem
is proved in [12].

Theorem 2.1. Let 1 < p < ∞ and let Ω ⊂ R
n be an exterior domain with

C1,1-boundary. Assume that tr M = 0 and b ∈ C∞
c (Ω). Then the operator LΩ,b

generates a C0-semigroup TΩ,b on Lp
σ(Ω).

Sketch of the proof. The proof is devided into several steps. First it is shown
that LΩ,b is the generator of an C0-semigroup TΩ,b on L2

σ(Ω). Then a-priori Lp-
estimates for TΩ,b are proved. Once we have shown this we can easily define a
consistent family of semigroups TΩ,b on Lp

σ(Ω) for 1 < p < ∞. In the last step the
generator of TΩ,b on Lp

σ(Ω) is identified to be LΩ,b.
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We start by showing that LΩ,b is the generator of a C0-semigroup on L2
σ(Ω).

Choose R > 0 such that supp b ∪ Ωc ⊂ BR(0) = {x ∈ R
n : |x| < R}. We then set

D = Ω ∩ BR+5(0),
K1 = {x ∈ Ω : R < |x| < R + 3},
K2 = {x ∈ Ω : R + 2 < |x| < R + 5}.

Denote by Bi for i ∈ {1, 2} Bogovskĭı’s operator (see [1], [9, Chapter III.3], [13])
associated to the domain Ki and choose cut-off functions ϕ, η ∈ C∞(Rn) such
that 0 ≤ ϕ, η ≤ 1 and

ϕ(x) =
{

0, |x| ≤ R + 1,
1, |x| ≥ R + 2,

and η(x) =
{

1, |x| ≤ R + 3,
0, |x| ≥ R + 4.

For f ∈ Lp
σ(Ω) we denote by fR the extension of f by 0 to all of R

n. Then,
since C∞

c,σ(Ω) is dense in Lp
σ(Ω), fR ∈ Lp

σ(Rn). Furthermore, we set fD =
ηf − B2((∇η)f). Since

∫
K2

(∇η)f = 0 it follows from [9, Chapter III.3] that
fD ∈ Lp

σ(D).
By the perturbation theorem for analytic semigroups there exists ω1 ≥ 0 such

that for λ > ω1 there exist functions uD
λ and pD

λ satisfying the equations

(λ − Lb)uD
λ + ∇pD

λ = fD, in D × R+,

∇ · uD
λ = 0, in D × R+,

uD
λ = 0, on ∂D × R+.

(4)

Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists ω2 ≥ 0 such that for
λ > ω2 there exists a function uR

λ satisfying

(λ − L0)uR
λ = fR, in R

n × R+,

∇ · uR
λ = 0, in R

n × R+.
(5)

For λ > max{ω1, ω2} we now define the operator Uλ : Lp
σ(Ω) → Lp

σ(Ω) by

Uλf = ϕuR
λ + (1 − ϕ)uD

λ + B1(∇ϕ(uR
λ − uD

λ )),(6)

where uR
λ and uD

λ are the functions given above, depending of course on f . By
definition, we have

Uλf ∈ {v ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) ∩ Lp

σ(Ω) : Mx · ∇v ∈ Lp
σ(Ω)}.(7)

Setting Pλf = (1 − ϕ)pD
λ , we verify that (Uλf, Pλf) satisfies

(λ − Lb)Uλf + ∇Pλf = f + Tλf, in Ω × R+,
∇ · Uλf = 0, in Ω × R+,

Uλf = 0, on ∂Ω × R+,

where Tλ is given by

Tλf = −2(∇ϕ)∇(uR
λ − uD

λ ) − (∆ϕ + Mx · (∇ϕ))(uR
λ − uD

λ ) + (∇ϕ)pD
λ

+ (λ − ∆ − Mx · ∇ + M)B1((∇ϕ)(uR
λ − uD

λ )).
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It follows from [12, Lemma 4.4] that for α ∈ (0, 1
2p′ ), where 1

p + 1
p′ = 1, there

exists a strongly continuous function H : (0,∞) → L(Lp
σ(Ω)) satisfying

‖H(t)‖L(Lp
σ(Ω)) ≤ Ctα−1eω̃t, t > 0(8)

for some ω̃ ≥ 0 and C > 0 such that λ �→ PΩTλ is the Laplace Transform of H.
We thus easily calculate

‖PΩTλ‖L(Lp
σ(Ω)) ≤ Cλ−α, λ > ω.

Therefore, Rλ := Uλ

∑∞
j=0(PΩTλ)j exists for λ large enough and (λ−Lb)Rλf = f

for f ∈ L2
σ(Ω). Since LΩ,b is dissipative in L2

σ(Ω), LΩ,b generates a C0-semigroup
TΩ,b on L2

σ(Ω). Moreover, we have the representation

TΩ,b(t)f =
∞∑

n=0

Tn(t)f, f ∈ L2
σ(Ω),(9)

where Tn(t) :=
∫ t

0
Tn−1(t − s)H(s) ds for n ∈ N and

T0(t) = ϕTR(t)fR + (1−ϕ)TD,b(t)fD + B1((∇ϕ)(TR(t)fR − TD,b(t)fD)), t ≥ 0.

Here TR denotes the semigroup on Lp
σ(Rn) generated by LRn,0 and TD,b denotes

the semigroup on Lp
σ(D) generated by LD,b. Note that λ �→ Uλ is the Laplace

Transform of T0. Since the right hand side of the representation (9) is well defined
and exponentially bounded in Lp

σ(Ω) by [12, Lemma 4.6], we can define a family
of consistent semigroups TΩ,b on Lp(Ω) for 1 < p < ∞. Finally, the generator of
TΩ,b on Lp(Ω) is LΩ,b which can be proved by using duality arguments (cf. [12,
Theorem 4.1]). �

Remark 2.2. (a) The semigroup TΩ,b is not expected to be analytic since, by
[16, Proposition 3.7], the semigroup TR3 in R

3 is not analytic.
(b) As the cut-off function ϕ is used for the localization argument similarly to

[15] the purpose of η is to ensure that fD ∈ Lp
σ(Ω). This is essential to est-

ablish a decay property in λ for the pressure PD
λ (cf. [12, Lemma 3.5]) and Tλ.

(c) The crucial point for a-priori Lp-estimates for TΩ,b on L2
σ(Ω) is the existence

of H satisfying (8).

Since Lp-Lq smoothing estimates for TR and TD,b follow from [14, Lemma 3.3
and Prop. 3.4] and [12, Prop. 3.2], the representation of the semigroup TΩ,b given
by (9) and estimates for sums of convolutions of this type (cf. [12, Lemma 4.6])
yield the following proposition.

Proposition 2.3. Let 1 < p < q < ∞ and let Ω ⊂ R
n be an exterior domain

with C1,1-boundary. Assume that trM = 0 and b ∈ C∞
c (Ω). Then there exist

constants C > 0, ω ≥ 0 such that for f ∈ Lp
σ(Ω)

(a) ‖TΩ,b(t)f‖Lq
σ(Ω) ≤ Ct−

n
2

(
1
p− 1

q

)
eωt‖f‖Lp

σ(Ω), t > 0,

(b) ‖∇TΩ,b(t)f‖Lp(Ω) ≤ Ct−
1
2 eωt‖f‖Lp

σ(Ω), t > 0.
Moreover, for f ∈ Lp

σ(Ω)

‖tn
2

(
1
p− 1

q

)
TΩ,b(t)f‖Lq

σ(Ω) + ‖t 1
2∇TΩ,b(t)f‖Lp(Ω) → 0, for t → 0.
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In order to construct a mild solution to (2) choose ζ ∈ C∞
c (Rn) with 0 ≤ ζ ≤ 1

and ζ = 1 near Γ. Further let K ⊂ R
n be a domain such that supp∇ζ ⊂ K. We

then define b : R
n → R

n by

b(x) := ζMx − BK((∇ζ)Mx),(10)

where BK is Bogovskĭı’s operator associated to the domain K. Then div b = 0
and b(x) = Mx on Γ. Setting u := v − b, it follows that u satisfies

∂tu − Lbu + ∇p = F in Ω × (0, T ),
∇ · u = 0 in Ω × (0, T ),

u = 0 on Γ × (0, T ),
u(x, 0) = u0(x) − b(x), in Ω,

(11)

with ∇ · (u0 − b) = 0 in Ω and F = −∆b − Mx · ∇b + Mb + b · ∇b, provided u
satisfies (2). Applying the Helmholtz projection PΩ to (11), we may rewrite (11)
as an evolution equation in Lp

σ(Ω):

u′ − LΩ,bu + PΩ(u · ∇u) = PΩF, 0 < t < T,
u(0) = u0 − b.

(12)

Note that we need the compatibility condition u0(x) · n = Mx · n on ∂Ω to
obtain u0 − b ∈ Lp

σ(Ω). In the following, given 0 < T < ∞, we call a function
u ∈ C([0, T );Lp

σ(Ω)) a mild solution of (12) if u satisfies the integral equation for
0 < t < T

u(t) = TΩ,b(t)(u0 − b) −
t∫

0

TΩ,b(t − s)PΩ(u · ∇u)(s) ds +

t∫
0

TΩ,b(t − s)PΩF (s) ds.

Then the main result of [12] is the following theorem.

Theorem 2.4. Let n ≥ 2, n ≤ p ≤ q < ∞ and let Ω ⊂ R
n be an exterior

domain with C1,1-boundary. Assume that trM = 0 and b ∈ C∞
c (Ω) and u0 − b ∈

Lp
σ(Ω). Then there exist T0 > 0 and a unique mild solution u of (12) such that

t �→ t
n
2 ( 1

p− 1
q )u(t) ∈ C ([0, T0] ;Lq

σ(Ω)) ,

t �→ t
n
2 ( 1

p− 1
q )+ 1

2∇u(t) ∈ C ([0, T0] ;Lq(Ω)) .

3. Strong solutions

In this section we construct strong solutions to problem (1) for Ω ⊂ R
n, n ≥ 2 and

trM = 0. The main difference to the method presented in the previous section
is another change of variables. Indeed, we construct a change of variables which
coincides with a simple rotation in a neighborhood of the rotating body but it
equals to the identity operator far away from the rotating body. More precisely,
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let X(·, t) : R
n → R

n denote the time dependent vector field satisfying

∂X

∂t
(y, t) = −b(X(y, t)), y ∈ R

n, t > 0,

X(y, 0) = y, y ∈ R
n,

where b is as in (10). Similarly to [6, Lemma 3.2], the vector field X(·, t) is a
C∞-diffeomorphism form Ω onto Ω(t) and X ∈ C∞([0,∞) × R

n). Let us denote
the inverse of X(·, t) by Y (·, t). Then, Y ∈ C∞([0,∞)×R

n). Moreover, it can be
shown that for any T > 0 and |α| + k > 0 there exists Ck,α,T > 0 such that

sup
y∈Rn,0≤t≤T

∣∣∣∣ ∂k

∂tk
∂α

∂yα
X(y, t)

∣∣∣∣ + sup
x∈Rn,0≤t≤T

∣∣∣∣ ∂k

∂tk
∂α

∂xα
Y (x, t)

∣∣∣∣ ≤ Ck,α,T0 .(13)

Setting
v(x, t) = JX(Y (x, t), t)w(Y (x, t), t), x ∈ Ω, t ≥ 0,

where JX denotes the Jacobian of X(·, t) and

p(x, t) = q(Y (x, t), t), x ∈ Ω, t ≥ 0,

similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which
are equivalent to (1).

∂tv − Lv + Mv + N v + Gp = 0, in Ω × R+,
∇ · v = 0, in Ω × R+,

v(x, t) = Mx, on Γ × R+,
v(x, 0) = w0(x), in Ω.

(14)

Here
(Lv)i =

n∑
j,k=1

∂

∂xj

(
gjk ∂vi

∂xk

)
+ 2

n∑
j,k,l=1

gklΓi
jk

∂vj

∂xl

+
n∑

j,k,l=1

(
∂

∂xk
(gklΓi

jl) +
n∑

m=1

gklΓm
jlΓ

i
km

)
vj ,

(N v)i =
n∑

j=1

vj
∂vi

∂xj
+

n∑
j,k=1

Γi
jkvjvk,

(Mv)i =
n∑

j=1

∂Xj

∂t

∂vi

∂xj
+

n∑
j,k=1

(
Γi

jk

∂Xk

∂t
+

∂Xi

∂xk

∂2Yk

∂xj∂t

)
vj ,

(Gp)i =
n∑

j=1

gij ∂p

∂xj

with
gij =

n∑
k=1

∂Xi

∂yk

∂Xj

∂yk
, gij =

n∑
k=1

∂Yk

∂xi

∂Yk

∂xj
and

Γk
ij =

1
2

n∑
l=1

gkl

(
∂gil

∂xj
+

∂gjl

∂xi
+

∂gij

∂xl

)
.
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The obvious advantage of this approach is that we do not have to deal with an
unbounded drift term since all coefficients appearing in L, N , M and G are smooth
and bounded on finite time intervals by (13). However, we have to consider a non-
autonomous problem. Setting u = v − b, we obtain the following problem with
homogeneous boundary conditions which is equivalent to (14).

∂tu − Lu + Mu + Nu + Bu + Gp = Fb, in Ω × R+,
∇ · u = 0 in Ω × R+,

u = 0, on Γ × R+,
u(x, 0) = w0(x) − b(x), in Ω.

(15)

Here,
(Bu)i =

n∑
j=1

(
uj

∂bi

∂xj
+ bj

∂ui

∂xj

)
+ 2

n∑
j,k=1

Γi
jkujbk, Fb = Lb −Mb −N b.

Since gij is smooth and gij(·, 0) = δij by definition, it follows from (13) that

‖gij(·, t) − δij‖L∞(Ω) → 0, t → 0.(16)

In other words, L is a small perturbation of ∆ and G is a small perturbation of ∇
for small times t. This motivates to write (15) in the following form.

∂tu − ∆u + ∇p = F (u, p), in Ω × R+,
∇ · u = 0, in Ω × R+,

u = 0, on Γ × R+,
u(x, 0) = w0(x) − b(x), in Ω,

(17)

where F (u, p) := (L − ∆)u − Mu − Nu + (∇ − G)p − Bu + Fb. We will use
maximal Lp-regularity of the Stokes operator and a fixed point theorem to show
the existence of a unique strong solution (u, p) of (15). More precisely, let

Xp,q
T := W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;D(Aq)) × Lp(0, T ; Ŵ 1,p(Ω)),

where D(Aq) := W 2,q(Ω)∩W 1,q
0 (Ω)∩Lq

σ(Ω) is the domain of the Stokes operator.
Then, by maximal Lp-regularity of the Stokes operator, Hölder’s inequality and
Sobolev’s embedding theorems Φ : Xp,q

T → Xp,q
T , Φ((ũ, p̃)) := (u, p) where (u, p) is

the unique solution of

∂tu − ∆u + ∇p = F (ũ, p̃), in Ω × (0, T )
∇ · u = 0, in Ω × (0, T ),

u = 0, on Γ × (0, T ),
u(x, 0) = w0(x) − b(x), in Ω,

is well-defined for 1 < p, q < ∞ with n
2q + 1

p < 3
2 and T > 0. Here, the restriction

on p and q comes from the nonlinear term N .
Finally, let Xp,q

T,δ := {(u, p) ∈ Xp,q
T : ‖(u, p)−(û, p̂)‖Xp,q

T
≤ δ, u(0) = w0−b} with

(û, p̂) = Φ(Φ(0, 0)). Then by (16), Hölder’s inequality and Sobolev’s embedding
theorems, it can be shown that for small enough δ > 0 and T > 0, Ψ|Xp,q

T,δ
is a

contraction.
We summarize our considerations in the next theorem which is proved in [7].

Note that the cases n = 2, 3 and p = q = 2 were already proved in [6].
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Theorem 3.1. Let 1 < p, q < ∞ such that n
2q + 1

p < 3
2 and let Ω ⊂ R

n be an
exterior domain with C1,1-boundary. Assume that tr M = 0 and that w0 − b ∈
(Lq

σ(Ω),D(Aq))1− 1
p ,p. Then there exist T > 0 and a unique solution (u, p) ∈ Xp,q

T

of problem (15).
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