4,253 research outputs found

    Theoretical regime diagrams for thermally driven flows in a beta-plane channel in the presence of variable gravity

    Get PDF
    The effect of a power law gravity field on baroclinic instability is examined, with a focus on the case of inverse fifth power gravity, since this is the power law produced when terrestrial gravity is simulated in spherical geometry by a dielectric force. Growth rates are obtained of unstable normal modes as a function of parameters of the problem by solving a second order differential equation numerically. It is concluded that over the range of parameter space explored, there is no significant change in the character of theoretical regime diagrams if the vertically averaged gravity is used as parameter

    Numerical study of baroclinic instability

    Get PDF
    The effect of a power law gravity field on baroclinic instability is examined with emphasis on the case of inverse fifth power gravity, since this is the power law produced when terrestrial gravity is simulated in spherical geometry by electrostatic means. Growth rates of unstable normal modes were obtained as a function of parameters of the problem by solving a second order differential equation numerically. Results are compared with those from an earlier study where gravity was a constant. The conclusion is that, over the range of parameter space explored here, there is no significant change in the character of theoretical regime diagrams if the vertically averaged gravity is used as a parameter

    A sample of relatively unstudied star clusters in the Large Magellanic Cloud: fundamental parameters determined from Washington photometry

    Get PDF
    To enlarge our growing sample of well-studied star clusters in the Large Magellanic Cloud (LMC), we present CCD Washington CT1 photometry to T1 ~ 23 in the fields of twenty-three mostly unstudied clusters located in the inner disc and outer regions of the LMC. We estimated cluster radii from star counts. Using the cluster Washington (T1,C-T1) colour-magnitude diagrams, statistically cleaned from field star contamination, we derived cluster ages and metallicities from a comparison with theoretical isochrones of the Padova group. Whenever possible, we also derived ages using delta_T1 - the magnitude difference between the red giant clump and the main sequence turn off - and estimated metallicities from the standard giant branch procedure. We enlarged our sample by adding clusters with published ages and metallicities determined on a similar scale by applying the same methods. We examined relationships between their positions in the LMC, ages and metallicities. We find that the two methods for age and metallicity determination agree well with each other. Fourteen clusters are found to be intermediate-age clusters (1-2 Gyr), with [Fe/H] values ranging from -0.4 to -0.7. The remaining nine clusters turn out to be younger than 1 Gyr, with metallicities between 0.0 and -0.4. Our 23 clusters represent an increase of ~ 30% in the current total amount number of well-studied LMC clusters using Washington photometry. In agreement with previous studies, we find no evidence for a metallicity gradient. We also find that the younger clusters were formed closer to the LMC centre than the older ones.Comment: 11 pages, 10 figures. A&A, in pres

    Age Determination of Fifteen Old to Intermediate-Age Small Magellanic Cloud Star Clusters

    Full text link
    We present CMDs in the V and I bands for fifteen star clusters in the Small Magellanic Cloud (SMC) based on data taken with the Very Large Telescope (VLT, Chile). We selected these clusters from our previous work, wherein we derived cluster radial velocities and metallicities from Calcium II infrared triplet (CaT) spectra also taken with the VLT. We discovered that the ages of six of our clusters have been appreciably underestimated by previous studies, which used comparatively small telescopes, graphically illustrating the need for large apertures to obtain reliable ages of old and intermediate-age SMC star clusters. In particular, three of these clusters, L4, L6 and L110, turn out to be amongst the oldest SMC clusters known, with ages of 7.9 +- 1.1, 8.7 +- 1.2 and 7.6 +- 1.0 Gyr, respectively, helping to fill a possible "SMC cluster age gap" (Glatt et al. 2008). Using the present ages and metallicities from Parisi et al. (2009), we analyze the age distribution, age gradient and age metallicity relation (AMR) of a sample of SMC clusters measured homogeneously. There is a suggestion of bimodality in the age distribution but it does not show a constant slope for the first 4 Gyr (Piatti 2011), and we find no evidence for an age gradient. Due to the improved ages of our cluster sample, we find that our AMR is now better represented in the intermediate/old period than that we derived in Parisi et al. (2009), where we simply took ages available in the literature. Additionally, clusters younger than aprox. 4 Gyr now show better agreement with the bursting model, but we confirm that this model is not a good representation of the AMR during the intermediate-age/old period. A more complicated model is needed to explain the SMC chemical evolution in that period.Comment: 76 pages, 32 figures. Accepted for publication in A

    Influence of firing mechanisms on gain modulation

    Full text link
    We studied the impact of a dynamical threshold on the f-I curve-the relationship between the input and the firing rate of a neuron-in the presence of background synaptic inputs. First, we found that, while the leaky integrate-and-fire model cannot reproduce the f-I curve of a cortical neuron, the leaky integrate-and-fire model with dynamical threshold can reproduce it very well. Second, we found that the dynamical threshold modulates the onset and the asymptotic behavior of the f-I curve. These results suggest that a cortical neuron has an adaptation mechanism and that the dynamical threshold has some significance for the computational properties of a neuron.Comment: 7 pages, 4 figures, conference proceeding

    A Search for Old Star Clusters in the Large Magellanic Cloud

    Get PDF
    We report the first results of a color-magnitude diagram survey of 25 candidate old LMC clusters. For almost all of the sample, it was possible to reach the turnoff region, and in many clusters we have several magnitudes of the main sequence. Age estimates based on the magnitude difference δT1\delta T_1 between the giant branch clump and the turnoff revealed that no new old clusters were found. The candidates turned out to be of intermediate age (1-3 Gyr) We show that the apparently old ages as inferred from integrated UBV colors can be explained by a combination of stochastic effects produced by bright stars and by photometric errors for faint clusters lying in crowded fields. The relatively metal poor candidates from the CaII triplet spectroscopy also turned out to be of intermediate age. This, combined with the fact that they lie far out in the disk, yields interesting constraints regarding the formation and evolution of the LMC disk. We also study the age distribution of intermediate age and old clusters This homogeneous set of accurate relative ages allows us to make an improved study of the history of cluster formation/destruction for ages >1>1Gyr. We confirm previous indications that there was apparently no cluster formation in the LMC during the period from 3-8 Gyr ago, and that there was a pronounced epoch of cluster formation beginning 3 Gyrs ago that peaked at about 1.5 Gyrs ago. Our results suggest that there are few, if any, genuine old clusters in the LMC left to be found.Comment: LaTeX, to be published in Nov. 1997 Astronomical Journa
    • …
    corecore