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ABSTRACT

This paper examines the effect of a power law gravity field

on baroclinic instability. We focus on the case of inverse fifth power

gravity, since this is the power law produced when terrestrial gravity

is simulated in spherical geometry by electrostatic means. We have

obtained growth rates of unstable normal modes as a function cf parameters

of the problem by solving a second order differential equation numerically.

Results are compared with those from an earlier study where gravity was a

constant. The conclusion is that, over the range of parameter space ex-

plored here, there is no significant change in the character of theoretical

regime diagrams if the vertically averaged gravity is used as parameter.



1. Introduction

It is generally agreed that the wavelike disturbances seen in

rotating cylindrical geometry laboratory flow experiments are the result of

baroclinic instability of axially-symmetric flow. This interpretation has

given a good theoretical basis by the study of Barcilon (1964) , in

which the eady model of baroclinic instability was used to obtain stability

criteria for axially-symmetric flows. These criteria are in reasonable

agreement with those observed in the laboratory for rotating anmilus

f lows.

In the earth's atmosphere baroclinic instability is also an impor-

tant process for maintaining departures from axially-symmetric flow. It has

long been felt that better simulation of atmospheric flow patterns or at 	 -

least a better understanding of how and when baroclinic instability operates

on the atmosphere could be achieved if laboratory rotating fluid experiments

could be done in spherical geometry. Such experiments have not been realize-

able because the dielectric body force for simulated radial gravity cannot

be made large enough to dominate the effect of ambient terrestrial gravity

in the laboratory. The low gravity environment aboard orbiting laboratories

such as Spacelab, to be operational in the early 1980's, affords an oppor-

tunity for such an experiment.

In going from cylindrical geometry to spherical geometry in a

rotating fluid experiment, one important new feature is the latitudinal

variation of the local vertical component of rotation. As is well known,

the effect of this on the dynamics of 	 low frequency geophysical motions

can be taken into account by a-plane geometry. As one of the first steps in

developing a model for use in design of a Spacelab experiment, Geisler and

Fowlis (1979) extended the work of Barcilon (1964) to a S-plane channel.

The principal result of theirstudy was to document the changes in the shape
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and location of the baroclinically unstable region of parameter space

brought about by the latitudinal dependence of the vertical component of

rotation.

One consequence of using a dielectric body force to simulate

gravity is that the force field law is one of inverse fifth power (Hart,

1976). This must be taken into account in mathematical models of the pro-

posed experiment and,moreover,is potentially troublesome because it does not

simulate the inverse square of terrestrial gravity.

This paper describes the extension of the baroclinic instability

model of Geisler and Fowlis (1979) to include an inverse fifth power law of

gravity. The study shows that there is little difference between the stability

information obtained from the two models provided gravity is replaced by its

vertical average. This result supports conclusions earlier obtained for an

annular geometry model by Giere and Fowlis (1979).

2. Formulation

Baroclinic instability in the presence of constant gravity was

treated in Geisler and Powlis (1979). In that paper we obtained growth rates

and eigenfunctions for unstable modes in both the Charney and Eady models of

baroclinic instability with and without Ekman- damping at the boundaries.

The normal modes were assumed to have the functional form

ip(x,y,z,t) _ O(z) sin (exp [ik(x-ct)]	 (1)

where ^ is a stream function, h is the width of the channel and n is a

positive integer. The equations solved there was

^2.2 + 
N22 

S _ k2 
+ n2Tr2	

S(z)	 0	 (2)

dz	 f	 11 -C	 h0

subject to the boundary conditions

	

A (u - c ) d _ - ^7	 + N 2	2^ 
s	

k 2 + n 2 n 2_ m(z)	 0	 (3)

dz	 dz	 2f	 f	 112
0

ldhere the plus sign applies at the upper boundary and the minus sign applies
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at the lower boundary.

In the above equations U(z) is the basic state flow whose stability

is being examined. As in Geisler and Fowlis (1979), we assume that the part of

basic state temperature field T(y,z) associated with 11(z) decreases linearly

with y and the basic state temperature field <T(z)> associated with the static

stability of the fluid increases linearly with z. 	 These paremeters enter the

problem through the thermal wind equation.

dLI t _	 ( 3T	 (4)
dz	 f t sy

and through the definition of N2

N2	ga (d<T>1 	(5)
dz J

Here T is the zonally averaged temperature, <T> is the area averaged temper-

ature, a is the coefficient of thermal expansion of the fluid and g is gravity.

In this paper we assign to g the variation.

9	 go
	 (6)

(1 + z/a)p

where p is an integer, a is the inner radius of the laboratory device and g o is

the value of g at z - 0. Integration of (4) upward from z - 0 (where we take

U	 0) gives the basic state flow

U (z) - -agoa DT	 1	 1 - ( l+z/a) I-P+1
	 l7)

f 
	 ay (p 1)

If p = 1, integration of (4) gives the logarithmic flow

U('z) _ - agoa aT	 In (1+z/a)	 (8)

f _ av
o

The stability of the flow given by equation (8) was examined by Giere and Fowlis

(1979). In the present paper we examine the stability of the flow given by

equation (7) with p = 5, that is, an inverse fifth power s;r•3vity.

In the case ofti(z) more general than the linear variation with z

used in Geisler and Fowlis (1979), the parameter V in equation (1) should
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be replaced by

d	 f	 (9)

dz	
N2 dz

However, as can be seen from equations (4) and (5), the factor g cancels out

the correction to B then vanishes when 3T /ay and d<T>/dz are constant, as is the

case here.

We introduce non-dimensional quantities denoted by a prime as follows:

X1 = x/L	 k' = kL
y' = y/L	 U = U /AF	 (10)
z' = z/d	 c = U /Ah

Here L is an arbitrary horizontal length scale (taken to be 0.707a in Geisler

and Fowlis, 1979)and dis the depth of the fluid. The quantity til is Li(d), that

is, the difference in the basic state flow between z = 0 and z = d. Equations

(2) and (3) then become

(U' - C l ) d 2	- S ( k' 2 + n2n2L2 1 +	 B	 ^(z')	 0 (11)

dz

,

	`	 h	 J

(U' - c')d	 dU' + S	 (E)	 k'2 + n2 n 2L y(z') - 0 (12)

dz'	 dz'	 ik'R	 2	 h20

The parameters in these equations are a static stability S, a 6-parameter B,

an Ekman number E and a thermal Rossby number R o . They are defined as

22
S= N d	 ;	 B e SL2 S	 (13)

2
f o L`	 All

E	 u	 Ro - AU	 (14)

f ad`	f 
0 
L

In the sequel, we refer to models with E = 0 in (12) as irnviscid

models. Equations (11) and (12), we refer to as the Charnev model of

baroclinic instability. The modal obtained by setting B = 0 in (11), we	 f*

refer to as the 1'a(IV Model.

In the inviscid F-idv model it is clistorlar y to disp lay the behaviour
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of ci ( the imaginary part of the mode phase speed) in a diagram of KS'c'i

versus KS I^. Here S is given by (13) and

K - (k' 2 + n 2 r 
2 

L 2	 (15)

h2
i

Giere and Fowlis ( 1979) studied the unstable modes in the inviscid Eady

model using the log profile basic state flow given by equation ( 8). They

discovered that the curve changed very little over a wide range of the

parameter d/a if S is used in the plot instead of S where S is the value

of S obtained from using in the definition of N 2 ( see equation ( 6) and (13))

the vertically averaged value of g defined as

g = goJ -	 dz'	 (16)
o I1 + (d `z'J
 aJ

In the results reported in this paper we also use S rather than S in the graphical

presentation.

3. Inviscid Model Results

All results presented here and in Section 4 were obtained by solving

equation ( 11) subject to boundary conditions ( 12) using the numerical technique

briefly described in Geisler and Fowlis ( 1979). As noted in Section 2, the

difference between that and the present study is that we here use gravity

which varies with radial distance according to the function

g =	 g_	 (17)

!1 + (A)  z' I p

where a is the inner radius and d the depth of the fluid.

As a cross check we first considered the case of p - 1 in the

inviscid Eady model, a case for which analytic solutions were obtained by

Giere and Fowlis (1979). We show in Figure (1) a plct of c i ' for runs with

d/a = 0 (that is, constant g), d/s = 1, and d/a = 10.	 The figure confirms

their result that inverse first power gravity has little effect provided the
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vertical average gravity is used for the plot. This agreement with their

analytic result also indicates that the numerical routine is functioning

correctly.

Figure (2) shows results for the inviscid Eady model when p - 5

(inverse fifth power gravity). Runs shown are those for d/a - 0, d/a -0.2

and d/a t 1. We have not gone beyond d/a - 1 because we anticipate that d/a

will have to be <1 in any reasonable geophysical experiment. Figure (3) shows

results when we go to the inviscid Charney model. Both Figure (2) and Figure

(3) support the conclusion that, for the range of d/a of geophysical interest

at least, such a plot is little affected by inverse fifth power gravity if the

vertical average gravity is used.

4. Regime Diagrams

Superimposed contour diagrams of c  for several values of zonal wave

number k in the parameter space of S versus R  /S"E constitute a theoretical

regime diagram. The construction of these diagrams for the Eady model and the

Charney model was the subject of the paper by Geisler and Fowlis (1979).

Figura (4) is taken from that paper and shows a theoretical regime diagram for

the Eady model when d - h - L - 0.707a. (The parameter c2 /d = 
o2

/S2E). The

curve labelled (1) is the stability boundary for zonal wave number (1) disturb-

ances, outside (to the left) of which c  <0. The envelope of the curves shown

in this figure obviously separates the region of parameter space where the flow

is unstable from where the flow is stable and hence axially-symmetric. Geophysical

experiments must be such that the unstable regime can exist in the apparatus,

hence the utility of theoretical regime diagrams in experimental design studies.

To illustrate the results of our study of the effect of inverse fifth

power gravity on theoretical regime diagrams, we have selected zonal wave

number (3). Figure (5) shows contours -)f KSl^c i  for this wave number in the

Eady model when g is constant.	 The Recond case, where d/a = 0.5, is so close

to this that it does not bear showing. Figure (6) shows the extreme (for a
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geophysical experiment) case for d /a - 1. Comparison with Figure 5 shows

that the difference is rather small.	 We have run cases for other zonal

wave numbers with the same result. 	 The conclusion is that for d/a <1,

the inverse fifth power gravity has only a small effect on the shape and

location of the unstable regime provided vertically averaged g is used in

drawing the diagram.

Figure ( 7) shows contours of KSI^ci ' for zonal wave number (3) in

the Charney model when g is constant. Here we adopt the value B - 2.35 used

as a standard case in Geisler and Fowlis ( 1979). The case for d/a - 0.2 is

again not much different and is not shown here. Figure ( 8) shows the case for

d/a - 1. The change is somewhat greater than in the corresponding Eady model

runs, the most notable change occurring in the region S <0.1. However, there

is very little change in the leftward penetration of the nose located at about

S - 0.2. We have obtained similar results for other zonal wave numbers. We

conclude that for d/a <1 the inverse fifth power gravity does not have significant

affect on regime diagrams in either the Charney model or the Eddy model provided

S rather than S is used as the parameter.
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Figure Legends

Figure 1. Imaginary part of phase speed in the inviscid Eady model for the
case of inverse first parer gravity. Curves are labelled by the
value of d/a. The dashed curve is the case of constant gravity.

Figure 2. Imaginary part of phase speed in the inviscid Eady model for the
case of inverse fifO power gravity. Curves are labelled by the
value of d/a. The dashed curve is the case of constant gravity.

Figure 3. Same as for Figure 2, but in the case of the inviscid Charney
model.

Figure 4. Theoretical regime diagram for the Eady model with d - h - acos8o
(from Geisler and Fowlis, 1979). The curves are stability
boundaries labelled by zonal wave number.

Figure S. Contours of imaginary part of phase speed KS 2ci ' in the Eady model
with gravity constant..

Figure 6. Contours of imaginary part of phase speed KSlci  in the Eady model
with inverse fifth power gravity and d/a - 1.

Figure 7. Contours of imaginary part of phase speed KS Ici ' in the Charney
model with gravity constant.

Figure 8. Contours of imaginary part of phase speed KS1 i ' in the Charney
model with inverse fifth power gravity and d/a 1.
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