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ABSTRACT

This paper examines the effect of a power law gravity field
on baroclinic instability. We focus on the case of inverse fifth power
gravity, since this is the power law produced when terresttial gravity
is simulated in spherical geometry by electrostatic means. We have
obtained growth rates of unstable normal modes as a function cf parameters
of the problem by solving a second order differential equation numerically.
Results are compared with those from an earlier stud§ where gravity was a
constant. The conclusion is that, over the range of parameter space ex-
plored here, there is no significant change in the character of theoretical

regime diagrams if the vertically averaged gravity is used as parameter.




1. Introduction

It 1s generally agreed that the wavelike disturbances seen in
rotating cylindrical geometry laboratory flow experimgnts are the result of
baroclinic instability of axially-symmetric flow. This interpretation has
haea given a good theoretical basis by the study of Barcilon (1964), in
which the eady model of baroclinic instability was used to obtain stability
criteria for axially-symmetric flows. These criteria are in reasonable
agreement with those observed in the laboratory for rotating anmilus
flows.

In the earth's atmosphere baroclinic instability is also an impor-
tant process for maintaining departures from axially-symmetric fiow. It has
long been felt that better simulation of atmospheric flow patterms or at .
least a better understanding of how andehen baroclinic instability operates
on the atmosphere could be achieved if laboratory rotating fluid experiments
could be done in spherical geometry. Such experiments have not been realize-
able because the dielectric body force for simulated radial gravity cannot
be made large enough to dominate the effect of ambient terrestrial gravity
in the laboratory. 'I'he» low gravity environment aboard orbiting laboratories
such as Spacelab, to be.operational in the early 1980's, affords an oppor-
tunity for such an experiment.

In going from cylindrical geometry to spherical geometry in a
rotating fluid experiment, one important new feature is the latitudinal
variation of the local vertical component of rotation. As is well known,
the effect of this on the dynamics of low frequency geophysical motions

7

can be taken into account by B-plane geometry. ‘As one of the first steps in

~eR L

developing a model for use in design of a Spacelab experiment, Geisler and
Fowlis (1979) extended the work of Barcilon (1964) to a B-plane channel.
The principal result of theirstudy was to ducument the changes in the shape
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and location of the baroclinically unstable region of parameter space
brought about by the latitudinal dependence of the vertical component of
rotation.

One consequence of using a dielectric body force to simulate
gravity is that the force field law is one of inverse fifth power (Hart,
1976). This must be taken into account in mathematical models of the pro-
posed experiment and,moreover,is potentially troublesome because it does not
simulate the inverse square of terrestrigl gravity.

This paper describes the extersion of the baroclinic instability
model of Geisler and Fowlis (1979) to include an inverse fifth power law of
gravity. The study shows that there is little difference between the stability
information obtained from the two models provided gravity is replaced by its
vertical average. This result supports conclusions earlier obtained for an
annular geometry model by Giere and Fowlis (1979).

2, Formulation

Baroclinic instability in the presence of constant gravity was
treated in Geisler and Fowlis (1979). In that paper we obtained growth rates
and eigenfunctions for unstable modes in both the Charney and Eady models of
baroclinic instability with and without Ekman' damping at the boundaries.

The normal modes were assumed to have the functional form

v(x,y,z,t) = ¢(2) sin (Eﬂl) exp [ik(x—ct)] (D
h

where y is a stream function, h is the width of the channel and n is a

~

positive integer. The equations solved there was

iz,. + _T‘_li E - kz + P_Z_TLZ_ ¢’(z) = 0 (2)
2 2 2
dz f0 u=-c h

subject to the boundary conditions
\

- 1
ik[(U ~od @ |+ 8 [y <k2 +f_n2_) 8(2) =0 (3)
dz dz 2t \f he

Where the plus sign applies at the upper boundary and the minus sign applies
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at the lower boundary.

In the above equations UY(z) is the basic state flow whose stability
is being examined. As in Geisler and Fowlis (1979), we assume that the part of
basic state temperature field T(y,z) associated with U(z) decreases linearly
with y and the basic state temperature field <T(z)> associated with the static
stability of the fluid increases linearly with =z. These paremeters enter the

problem through the thermal wind equation.

& oga (2T (4)
dz f Jy
o
and through the definition of N2
N = ga (d<T>) (5)
dz

Here T is the zonally averaged temperature, <T> is the area averaged temper-
ature, a 1is the coefficient of thermal expansion of the fluid and g is gravity.

In this paper we assign to g the variation.

g = 8, (6)
(1 + z/a)P
where p is an integer, & is the inner radius of the laboratory device and Bq is
the value of g at z = Q. Integration of (4) upward from z = 0 (where we take
U = 0) gives rhe basic.state flow
U(z) = _ag_a aT [ 1 {l - (1+'.:/a)}—p+1 ] %))
£, % LG-D

If p = 1, integration of (4) gives the logarithmic flow

o v
0 O

U(z) = - ag_a aT [ 1n (1+z/a)] . (8)
The stability of the flow given by equation (8) was examined by Giere and Fowlis
(1979). 1In the present paper we examine the stability of the flow given by
equation (7) with p = 5, that is, an inverse fifth power gravity.

In the case of U (2) more general than the lincar variation with z

used in Ceisler and Fowlis (1979), the parameter B in equation (1) should
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be replaced by

2

f d (9)
tn |+ —
z N dz

However, as can be seen from equations (4) and (5), the factor g cancels out
the correction to B then vanishes when 3T/dy and d<T>/dz are constant, as is the

case here.

We introduce non-dimensional quantities denoted by a prime as follows:

x' = x/L k' = kL
y' = y/L v' = Uu/AL (10)
z' = 2/d c' = /A

Here L is an arbitrary horizontal length scale (taken to be 0.707a in Geisler
and Fowlis, 1979)and dis the depth of the fluid. The quantity & is u(d), that
is, the difference in tlie basic state flow between z = 0 and z = d. Equations

(2) and (3) then become

(w - |d® s ( k'2 +92ﬂ2L2) ., B Jeh =0 an
| dz'q h2

(W' - ¢hd @'+ s (E) %0 4 02 Nz = 0 (1)
L dz' 4z k'R \2 n?

The parameters in these equations are a static stability S, 5 B-parameter B,

an Ekwan number E and a thermal Rossby number Ro' They are defined as

2.2
5= N4 : B = gLl s (13)
272 S
£°L AU
E = u ; R = AU (14)
(¢
s o
f d- _fL
i\ 0

In the sequel, we refer to models with E = 0 in (12) as {uviscid
models.  Equations (11)  and (12), we refer to as the Charney model of
baroclinic instability. The model obtained by setting B = 0 in (11), we
refer to as the Fady model,

In the inviscid Fady model {t is customary te display the behaviour

-4 -

ol .



L9
of ¢ (the imaginary part of the mode phase speed) in a diagram of KS$ “c¢’

i
versus KSH. Here S is given by (13) and
K= k'z + n2ﬂ2L2 % A (15)
h2

/

Giere and Fowlis (1979) studied the unstable modes in the inviscid Eady
model using the log profile basic state flow given by equation (8). They
discovered that the curve changed very little over a wide range of the

o= L

parameter d/a if S? is used in the plot instead of §°, where S is the value
of S obtained from using in the definition of N2 (see equation (6) and (13))
the vertically averaged value of g defined as

§=gof dz' (16)
o 1+ (g. z'

a

In the results reported in this paper we also use S rather than S in the grapﬁical

presentation.

3. Inviscid Model Results

All results presented here and in Section 4 were obtained by solving
equation (11) subject to boundary conditions (12) using the numerical technique
briefly described in Geisler and Fowlis (1979). As noted in Section 2, the
difference between that and the present study is that we here use gravity
which varies with radial distance according to the function

g = B, (17
1+ (g) 2t |P
a

where a is the imner radius and d the depth of the fluid.

As a cross check we first considered the case of p = 1 in the
inviscid Eady model, a case for which analytic solutions werc obtained by

' for runs with

Giere and Fowlis (1979). We show in Figure (1) a plet of o
d/a = 0 (that is, constant g), d/a = 1, and d/a = 10. The fipgure confirms

their result that inverse first power gravity has little effect provided the
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vertical average gravity is used for the plot. This agreement with their
analytic result also indicates that the numerical routine is functioning
correctly,

Figure (2) shows results for the Inviscid Eady model when p = 5
(inverse fifth power gravity). Runs shown are those for d/a = 0, d/a =0.2
and d/a = 1. We have not gone beyond d/a = 1 because we anticipate that d/a
will have to be <l in any reasonable geophysical experiment. Figurec (3) shows
results when we go to the inviscid Charney model. Both Figure (2) and Figure
(3) support the conclusion that, for the range of d/a of geophysical interest
at least, such a rlot is little affected by.inverse fifth power gravity if thé
vertical average gravity is used.

4, Regime Diagrams -

Superimposed contour diagrams of o for several values of zonal wave

number k in the parameter space of S versus ROZ/S"E constitute a theoretical

regime diagram. The construction of these diagrams for the Eady model and the

Charney model was the subject of the paper by Geisler and Fowlis (1979).

Figure (4) is taken from that paper and shows a theoretical regime diagram for
the Eady model when d = h = L = 0,707a. (The parameter e2/6 - ROZ/SZE). The
curve labelled (1) is the stability boundary for zonal wave number (1) disturb-

ances, outside (to the left) of which ¢, <0. The envelope of the curves shown

i

in this figure obviously separates the region of parameter space where the flow

is unstable from where the flow is stable and hence axially-symmetric. Geophysical

experiments must be such that the unstable regime can exist in the apparatus,

hence the utility of theoretical regime diagrams in experimental design studies.
To illustrate the results of our study of the effect of inverse fifth

power gravity on theoretical regime diagrams, we have selected zonal wave

A

number (3). Figure (5) shows contours »f KS'Aci for this wave number in the
Eady model when g is constant. The second case, where d/a = 0.5, is so close

to this that it does not bear showing., Figure (6) shows the extreme (for a
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geophysical experiment) case for d/a = 1. Comparison with Figure 5 shows
that the difference is rather small. We have run cases for other zonal
wave numbers with the same result. The conclusion is that for d/a <1,
the inverse fifth power gravity has only a small effect on the shape and
location of the unstable regime provided vertically averaged g is used in
drawing the diagram.

K§%c ' for zonal wave number (3) in

i
the Charney model when g is constant. Here we adopt the value B = 2,35 used

Figure (7) shows contours of

as a standard case in Geisler and Fowlis (1979). The case for d/a = 0.2 is
again not much different and is not shown here. Figure (8) shows the case for

d/a = 1. The change is somewhat greater than in the corresponding Eady model
runs, the most notable change occurring in the regicn §'§p.1. However, there

is very little change in the leftward penetration of the nose located at about

S = 0.2. We have obtained similar results for other zonal wave numbers. We
conclude that for d/a <1 the inverse fifth power gravity does not have significant
affect on regime diagrams in either the Charney model or the Eddy model provided

S rather than S is used as the parameter.
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Figure Legends

Figure 1. Imaginary part of phase speed in the inviscid Eady model for the
case of inverse first power gravity. Curves are labelled by the
value of d/a. The dashed curve is the case of constant gravity,

Figure 2. Imaginary part of phase speed in the inviscid Eady model for the
case of inverse fifth power gravity. Curves are labelled by the
value of d/a. The dashed curve is the case of constant gravity.

Figure 3, Same as for Figure 2, but in the case of the inviscid Charney
model.

Figure 4. Theoretical regime diagram for the Eady model with d = h = acos®
(from Geisler and Fowlie, 1979). The curves are stability
boundaries labelled by zonal wave number.

Figure 5. Contours of imaginary part of phase speed ngci' in the Eady model
with gravity constant.

Figure 6. Contours of imaginary part of phase speed ngci' in the Eady model
with inverse fifth power gravity and d/a = 1.

Figure 7. Contours of imaginary part of phase speed Kgﬁci' in the Chamney
model with gravity constant.

Figure 8, Contours of imaginary part of phase speed ﬂ?{ ' in the Chamney
model with inverse fifth power gravity and d/a = 1.
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