116 research outputs found
Life cycle impact assessment of pesticides: When active substances are spread into the environment
Pesticides are biologically active substances that are directly released to the environment during the use phase of their life cycle. Pesticides are widely used and play an important role in the production of vital goods such as food, feedstuffs and cotton. The Discussion Forum 19 focused on the impact assessment of pesticides applied in agriculture. The discussion forum started with three talks about new approaches to estimate pesticide emissions and to assess their fate in the environment. The following short presentations illustrated the application of some of these methods in case studies and highlighted the problem of data availability. The last two presentations provided insight into risk assessment models used for pesticide registration from a company perspective and from the viewpoint of the authoritie
Development of attitudes during the transition to university mathematics – different for students who drop out?
Students’ attitudes are assumed to play a big role for successful learning processes and to differ substantially between students. To gain a better insight in which way attitudes at the start of a mathematics study program and their development influence study dropout, we asked 219 students to state their interest in university mathematics and their mathematical self-concept at the start of their studies and six weeks later. Applying a cluster analysis, we identified four development profiles which differ in both attitudes at the start of their studies and in the development of both attitudes. The dropout rate among students with different profiles ranged from 7 % to 44 %, highlighting that the development of attitudes in the first semester is of major importance for a successful start
Uncertainty Analysis in Life Cycle Assessment (LCA): Case Study on Plant - Protection Products and Implications for Decision Making (3 pp)
Goal, Scope, and Background: Uncertainty analysis in LCA is important for sound decision support. Nevertheless, the actual influence of uncertainty on decision making in specific LCA case-studies has only been little studied so far. Therefore, we assessed the uncertainty in an LCA comparing two plant-protection products. Methods: Uncertainty and variability in LCI flows and characterization factors (CML-baseline method) were expressed as generic uncertainty factors and subsequently propagated into impact scores using Monte-Carlo simulation. Uncertainty in assumptions on production efficiency for chemicals, which is of specific interest for the case study, was depicted by scenarios. Results and Discussion: Impact scores concerning acidification, eutrophication, and global warming display relatively small dispersions. Differences in median impact scores of a factor of 1.6 were sufficient in the case study for a significant distinction of the products. Results of toxicity impact-categories show large dispersions due to uncertainty in characterization factors and in the composition of sum parameters. Therefore, none of the two products was found to be significantly environmentally preferable to the other. Considering the case study results and inherent characteristics of the impact categories, a tentative rule of thumb is put forward that quantifies differences in impact scores necessary to obtain significant results in product comparisons. Conclusion: Published LCA case-studies may have overestimated the significance of results. It is therefore advisable to routinely carry out quantitative uncertainty analyses in LCA. If this is not feasible, for example due to time restrictions, the rule of thumb proposed here may be helpful to evaluate the significance of results for the impact categories of global warming, acidification, eutrophication, and photooxidant creatio
Gene therapy targeting SARM1 blocks pathological axon degeneration in mice
Axonal degeneration (AxD) following nerve injury, chemotherapy, and in several neurological disorders is an active process driven by SARM1, an injury-activated NADase. Axons of SARM1-null mice exhibit greatly delayed AxD after transection and in models of neurological disease, suggesting that inhibiting SARM1 is a promising strategy to reduce pathological AxD. Unfortunately, no drugs exist to target SARM1. We, therefore, developed SARM1 dominant-negatives that potently block AxD in cellular models of axotomy and neuropathy. To assess efficacy in vivo, we used adeno-associated virus-mediated expression of the most potent SARM1 dominant-negative and nerve transection as a model of severe AxD. While axons of vehicle-treated mice degenerate rapidly, axons of mice expressing SARM1 dominant-negative can remain intact for \u3e10 d after transection, similar to the protection observed in SARM1-null mice. We thus developed a novel in vivo gene therapeutic to block pathological axon degeneration by inhibiting SARM1, an approach that may be applied clinically to treat manifold neurodegenerative diseases characterized by axon loss
Combined Blockade of ADP Receptors and PI3-Kinase p110β Fully Prevents Platelet and Leukocyte Activation during Hypothermic Extracorporeal Circulation
Extracorporeal circulation (ECC) and hypothermia are used to maintain stable circulatory parameters and improve the ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K) p110β. Under clinical conditions these processes are associated with life-threatening complications including thromboembolism and inflammation. This study analyzes effects of ADP receptor P2Y12 and P2Y1 blockade and PI3K p110β inhibition on platelets and granulocytes during hypothermic ECC. Human blood was treated with the P2Y12 antagonist 2-MeSAMP, the P2Y1 antagonist MRS2179, the PI3K p110β inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls). Under static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood was circulated in an ex vivo ECC model at 28°C for 30 minutes and various platelet and granulocyte markers were investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was inhibited using TGX-221 alone or in combination with P2Y blockers (p<0.05), while no effect of hypothermic ECC or antiplatelet agents on GPIIb/IIIa and GPIbα expression and von Willebrand factor binding was observed. Sole P2Y and PI3K blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during hypothermic ECC (p<0.05). P2Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte aggregate formation (p<0.05). Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes were inhibited by combined P2Y and PI3K blockade (p<0.05). Combined blockade of P2Y12, P2Y1 and PI3K p110β completely inhibits hypothermic ECC-induced activation processes. This novel finding warrants further studies and the development of suitable pharmacological agents to decrease ECC- and hypothermia-associated complications in clinical applications
TMEM184b promotes axon degeneration and neuromuscular junction maintenance
UNLABELLED: Complex nervous systems achieve proper connectivity during development and must maintain these connections throughout life. The processes of axon and synaptic maintenance and axon degeneration after injury are jointly controlled by a number of proteins within neurons, including ubiquitin ligases and mitogen activated protein kinases. However, our understanding of these molecular cascades is incomplete. Here we describe the phenotype resulting from mutation of TMEM184b, a protein identified in a screen for axon degeneration mediators. TMEM184b is highly expressed in the mouse nervous system and is found in recycling endosomes in neuronal cell bodies and axons. Disruption of TMEM184b expression results in prolonged maintenance of peripheral axons following nerve injury, demonstrating a role for TMEM184b in axon degeneration. In contrast to this protective phenotype in axons, uninjured mutant mice have anatomical and functional impairments in the peripheral nervous system. Loss of TMEM184b causes swellings at neuromuscular junctions that become more numerous with age, demonstrating that TMEM184b is critical for the maintenance of synaptic architecture. These swellings contain abnormal multivesicular structures similar to those seen in patients with neurodegenerative disorders. Mutant animals also show abnormal sensory terminal morphology. TMEM184b mutant animals are deficient on the inverted screen test, illustrating a role for TMEM184b in sensory-motor function. Overall, we have identified an important function for TMEM184b in peripheral nerve terminal structure, function, and the axon degeneration pathway.
SIGNIFICANCE STATEMENT: Our work has identified both neuroprotective and neurodegenerative roles for a previously undescribed protein, TMEM184b. TMEM184b mutation causes delayed axon degeneration following peripheral nerve injury, indicating that it participates in the degeneration process. Simultaneously, TMEM184b mutation causes progressive structural abnormalities at neuromuscular synapses and swellings within sensory terminals, and animals with this mutation display profound weakness. Thus, TMEM184b is necessary for normal peripheral nerve terminal morphology and maintenance. Loss of TMEM184b results in accumulation of autophagosomal structures in vivo, fitting with emerging studies that have linked autophagy disruption and neurological disease. Our work recognizes TMEM184b as a new player in the maintenance of the nervous system
Presynaptic α2δ subunits are key organizers of glutamatergic synapses
In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density
Recommended from our members
α2δ-4 and Cachd1 proteins are regulators of presynaptic functions
The α2δ auxiliary subunits of voltage-gated calcium channels (VGCC) were traditionally regarded as modulators of biophysical channel properties. In recent years, channel-independent functions of these subunits, such as involvement in synapse formation, have been identified. In the central nervous system, α2δ isoforms 1, 2, and 3 are strongly expressed, regulating glutamatergic synapse formation by a presynaptic mechanism. Although the α2δ-4 isoform is predominantly found in the retina with very little expression in the brain, it was recently linked to brain functions. In contrast, Cachd1, a novel α2δ-like protein, shows strong expression in brain, but its function in neurons is not yet known. Therefore, we aimed to investigate the presynaptic functions of α2δ-4 and Cachd1 by expressing individual proteins in cultured hippocampal neurons. Both α2δ-4 and Cachd1 are expressed in the presynaptic membrane and could rescue a severe synaptic defect present in triple knockout/knockdown neurons that lacked the α2δ-1-3 isoforms (α2δ TKO/KD). This observation suggests that presynaptic localization and the regulation of synapse formation in glutamatergic neurons is a general feature of α2δ proteins. In contrast to this redundant presynaptic function, α2δ-4 and Cachd1 differentially regulate the abundance of presynaptic calcium channels and the amplitude of presynaptic calcium transients. These functional differences may be caused by subtle isoform-specific differences in α1 -α2 δ protein–protein interactions, as revealed by structural homology modelling. Taken together, our study identifies both α2δ-4 and Cachd1 as presynaptic regulators of synapse formation, differentiation, and calcium channel functions that can at least partially compensate for the loss of α2δ-1-3. Moreover, we show that regulating glutamatergic synapse formation and differentiation is a critical and surprisingly redundant function of α2δ and Cachd1
A substrate of the ABC transporter PEN3 stimulates bacterial flagellin (flg22)-induced callose deposition in Arabidopsis thaliana
Nonhost resistance of Arabidopsis thaliana against Phytophthora infestans, a filamentous eukaryotic microbe and the causal agent of potato late blight, is based on a multilayered defense system. Arabidopsis thaliana controls pathogen entry through the penetration-resistance genes PEN2 and PEN3, encoding an atypical myrosinase and an ABC transporter, respectively, required for synthesis and export of unknown indole compounds. To identify pathogen-elicited leaf surface metabolites and further unravel nonhost resistance in Arabidopsis, we performed untargeted metabolite profiling by incubating a P. infestans zoospore suspension on leaves of WT or pen3 mutant Arabidopsis plants. Among the plant-secreted metabolites, 4-methoxyindol-3- yl-methanol and S-(4-methoxy-indol-3-yl-methyl) cysteine were detected in spore suspensions recollected from WT plants, but at reduced levels from the pen3 mutant plants. In both whole-cell and microsome-based assays, 4-methoxyindol-3-yl- methanol was transported in a PEN3-dependent manner, suggesting that this compound is a PEN3 substrate. The syntheses of both compounds were dependent on functional PEN2 and phytochelatin synthase 1. None of these compounds inhibited mycelial growth of P. infestans in vitro. Of note, exogenous application of 4- methoxyindol-3-yl methanol slightly elevated cytosolic Ca2+ levels and enhanced callose deposition in hydathodes of seedlings treated with a bacterial pathogen- associated molecular pattern (PAMP), flagellin (flg22). Loss of flg22-induced callose deposition in leaves of pen3 seedlings was partially reverted by the addition of 4- methoxyindol-3-yl methanol. In conclusion, we have identified a specific indole compound that is a substrate for PEN3 and contributes to the plant defense response against microbial pathogens
- …