2,105 research outputs found

    Rapid determination of p K a values of 20 amino acids by CZE with UV and capacitively coupled contactless conductivity detections

    Get PDF
    A rapid and universal capillary zone electrophoresis (CZE) method was developed to determine the dissociation constants (pK a) of the 20 standard proteogenic amino acids. Since some amino acids are poorly detected by UV, capacitively coupled contactless conductivity detection (C4D) was used as an additional detection mode. The C4D coupling proved to be very successful on a conventional CE-UV instrument, neither inducing supplementary analyses nor instrument modification. In order to reduce the analysis time for pK a determination, two strategies were applied: (i) a short-end injection to reduce the effective length, and (ii) a dynamic coating procedure to generate a large electroosmotic flow (EOF), even at pH values as low as 1.5. As a result, the analysis time per amino acid was less than 2h, using 22 optimized buffers covering a pH range from 1.5 to 12.0 at a constant ionic strength of 50mM. pK a values were calculated using an appropriate mathematical model describing the relationship between effective mobility and pH. The obtained pK a values were in accordance with the literature. Figure a UV (1) and C4D (2) detectors placed on-line on the CE capillary. b Curve of effective mobility as a function of pH for histidin

    Ultra strong coupling regime and plasmon-polaritons in parabolic semiconductor quantum wells

    Full text link
    Ultra strong coupling is studied in a modulation-doped parabolic potential well coupled to an inductance-capacitance resonant circuit. In this system, in accordance to Kohn's theorem, strong reduction of the energy level separation caused by the electron-electron interaction compensates the depolarization shift. As a result, a very large ratio of 27% of the Rabi frequency to the center resonance frequency as well as a polariton gap of width 2? ? 670GHz are observed, suggesting parabolic quantum wells as the system of choice in order to explore the ultra-strong coupling regime

    Wipe sampling procedure coupled to LC-MS/MS analysis for the simultaneous determination of 10 cytotoxic drugs on different surfaces

    Get PDF
    A simple wipe sampling procedure was developed for the surface contamination determination of ten cytotoxic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, cyclophosphamide, ifosfamide, irinotecan, doxorubicin, epirubicin and vincristine. Wiping was performed using Whatman filter paper on different surfaces such as stainless steel, polypropylene, polystyrol, glass, latex gloves, computer mouse and coated paperboard. Wiping and desorption procedures were investigated: The same solution containing 20% acetonitrile and 0.1% formic acid in water gave the best results. After ultrasonic desorption and then centrifugation, samples were analysed by a validated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring mode. The whole analytical strategy from wipe sampling to LC-MS/MS analysis was evaluated to determine quantitative performance. The lowest limit of quantification of 10ng per wiping sample (i.e. 0.1ngcm−2) was determined for the ten investigated cytotoxic drugs. Relative standard deviation for intermediate precision was always inferior to 20%. As recovery was dependent on the tested surface for each drug, a correction factor was determined and applied for real samples. The method was then successfully applied at the cytotoxic production unit of the Geneva University Hospitals pharmacy. Figure Wipe sampling procedure for the determination of cytotoxic drug

    Phenotyping of CYP450 in human liver microsomes using the cocktail approach

    Get PDF
    The cocktail approach is an advantageous strategy used to monitor the activities of several cytochromes P450 (CYPs) in a single test to increase the throughput of in vitro phenotyping studies. In this study, a cocktail mixture was developed with eight CYP-specific probe substrates to simultaneously evaluate the activity of the most important CYPs, namely, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and the CYP3A subfamily. After cocktail incubation in the presence of human liver microsomes (HLMs), the eight selected substrates and their specific metabolites were analyzed by ultra-high-pressure liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry. Qualitative and quantitative data were simultaneously acquired to produce an overview of the extended phase I biotransformation routes for each probe substrate in the HLMs and to generate phenotypic profiles of various HLMs. A comparison of the cocktail strategy with an individual substrate assay for each CYP produced similar results. Moreover, the cocktail was tested on HLMs with different allelic variants and/or in the presence of selective inhibitors. The results were in agreement with the genetic polymorphisms of the CYPs and the expected effect of the alterations. All of these experiments confirmed the reliability of this cocktail assay for phenotyping of the microsomal CYPs

    Simultaneous quantification of ten cytotoxic drugs by a validated LC-ESI-MS/MS method

    Get PDF
    A liquid chromatography separation with electrospray ionisation and tandem mass spectrometry detection method was developed for the simultaneous quantification of ten commonly handled cytotoxic drugs in a hospital pharmacy. These cytotoxic drugs are cytarabine, gemcitabine, methotrexate, etoposide phosphate, cyclophosphamide, ifosfamide, irinotecan, doxorubicin, epirubicin and vincristine. The chromatographic separation was carried out by RPLC in less than 21min, applying a gradient elution of water and acetonitrile in the presence of 0.1% formic acid. MS/MS was performed on a triple quadrupole in selected reaction monitoring mode. The analytical method was validated to determine the limit of quantification (LOQ) and quantitative performance: lowest LOQs were between 0.25 and 2ngmL−1 for the ten investigated cytotoxic drugs; trueness values (i.e. recovery) were between 85% and 110%, and relative standard deviations for both repeatability and intermediate precision were always inferior to 15%. The multi-compound method was successfully applied for the quality control of pharmaceutical formulations and for analyses of spiked samples on potentially contaminated surfaces. Figure Preparation of cytotoxic formulations at the Pharmacy of Geneva University Hospital

    Measurement of event shapes in deep inelastic scattering at HERA

    Get PDF
    Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure

    Inclusive jet cross sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of αs\alpha_{s}

    Get PDF
    Inclusive jet differential cross sections have been measured in neutral current deep inelastic e+p scattering for boson virtualities Q**2>125 GeV**2. The data were taken using the ZEUS detector at HERA and correspond to an integrated luminosity of 38.6 pb-1. Jets were identified in the Breit frame using the longitudinally invariant K_T cluster algorithm. Measurements of differential inclusive jet cross sections are presented as functions of jet transverse energy (E_T,jet), jet pseudorapidity and Q**2, for jets with E_T,jet>8 GeV. Next-to-leading-order QCD calculations agree well with the measurements both at high Q**2 and high E_T,jet. The value of alpha_s(M_Z), determined from an analysis of dsigma/dQ**2 for Q**2>500 GeV**2, is alpha_s(M_Z) = 0.1212 +/- 0.0017 (stat.) +0.0023 / -0.0031 (syst.) +0.0028 / -0.0027 (th.)

    Particle-flow reconstruction and global event description with the CMS detector

    Get PDF
    The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions

    Searches for excited fermions in ep collisions at HERA

    Get PDF
    Searches in ep collisions for heavy excited fermions have been performed with the ZEUS detector at HERA. Excited states of electrons and quarks have been searched for in e^+p collisions at a centre-of-mass energy of 300 GeV using an integrated luminosity of 47.7 pb^-1. Excited electrons have been sought via the decays e*->egamma, e*->eZ and e*->nuW. Excited quarks have been sought via the decays q*->qgamma and q*->qW. A search for excited neutrinos decaying via nu*->nugamma, nu*->nuZ and nu*->eW is presented using e^-p collisions at 318 GeV centre-of-mass energy, corresponding to an integrated luminosity of 16.7 pb^-1. No evidence for any excited fermion is found, and limits on the characteristic couplings are derived for masses below 250 GeV

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)
    corecore