12 research outputs found

    Fat and skinny bacteria?

    Get PDF
    Due to the increased availability of high-throughput DNA-sequencing technologies and quantitative PCR, investigators have flooded the scientific literature with reports describing the composition of different gastrointestinal microbiotas. With the use of gnotobiotic isolators housing axenic animals, i.e. germ- or microbiota-free animals, investigators have also undertaken more hypothesis-driven research addressing putative roles for the microbiota in host health. Possibly inspired by the patent spread and pathogenesis of obesity and metabolic syndrome, in combination with the observation that a commonly used strain of germ-free laboratory mice are more resistant to obesity than their conventional counterparts a major focus of much of this work has considered the relationship between the microbiota of the host and the susceptibility of the host to obesity. Additionally, compared to many existing and theoretic therapeutics to counter the obesity pandemic, the microbiota is potentially a more practical target. I attempt to very briefly summarize, for nonprofessionals of microbiome study, the composition of the microbiota as it relates to obesity in humans. This is intended to provide the reader with sources for finding further information, including primary research that has contributed to our knowledge and more comprehensive reviews on the relevant topics mentioned

    Commensal \u3ci\u3eEscherichia coli\u3c/i\u3e Strains Can Promote Intestinal Inflammation via Differential Interleukin-6 Production

    Get PDF
    Escherichia coli is a facultative anaerobic symbiont found widely among mammalian gastrointestinal tracts. Several human studies have reported increased commensal E. coli abundance in the intestine during inflammation; however, host immunological responses toward commensal E. coli during inflammation are not well-defined. Here, we show that colonization of gnotobiotic mice with different genotypes of commensal E. coli isolated from healthy conventional microbiota mice and representing distinct populations of E. coli elicited strain-specific disease phenotypes and immunopathological changes following treatment with the inflammatory stimulus, dextran sulfate sodium (DSS). Production of the inflammatory cytokines GM-CSF, IL-6, and IFN-y was a hallmark of the severe inflammation induced by E. coli strains of Sequence Type 129 (ST129) and ST375 following DSS administration. In contrast, colonization with E. coli strains ST150 and ST468 caused mild intestinal inflammation and triggered only low levels of pro-inflammatory cytokines, a response indistinguishable from that of E. coli-free control mice treated with DSS. The disease development observed with ST129 and ST375 colonization was not directly associated with their abundance in the GI tract as their levels did not change throughout DSS treatment, and no major differences in bacterial burden in the gut were observed among the strains tested. Data mining and in vivo neutralization identified IL-6 as a key cytokine responsible for the observed differential disease severity. Collectively, our results show that the capacity to exacerbate acute intestinal inflammation is a strain-specific trait that can potentially be overcome by blocking the pro-inflammatory immune responses that mediate intestinal tissue damage

    Regulatory T cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL-17-dependent colon carcinogenesis.

    No full text
    Many epithelial cancers are associated with chronic inflammation. However, the features of inflammation that are pro-carcinogenic are not fully understood. Tregs typically restrain overt inflammatory responses and maintain intestinal immune homeostasis. Their immune suppressive activity can inhibit inflammation-associated cancers. Paradoxically, we show that colonic Tregs initiate IL-17-mediated carcinogenesis in multiple intestinal neoplasia mice colonized with the human symbiote ETBF. Depletion of Tregs in ETBF-colonized C57BL/6 Foxp3(DTR) mice enhanced colitis but diminished tumorigenesis associated with shifting of mucosal cytokine profile from IL-17 to IFN-γ; inhibition of ETBF-induced colon tumorigenesis was dependent on reduced IL-17 inflammation and IFN-γ-independent. Treg enhancement of IL-17 production is cell-extrinsic. IL-2 blockade restored Th17 responses and tumor formation in Treg-depleted animals. Our findings demonstrate that Tregs limit the availability of IL-2 in the local microenvironment, allowing Th17 development necessary to promote ETBF-triggered neoplasia and thus unveil a new mechanism whereby Treg responses to intestinal bacterial infection can promote tumorigenesis

    Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria

    No full text
    Contains fulltext : 183987pub.pdf (publisher's version ) (Closed access

    Commensal \u3ci\u3eEscherichia coli\u3c/i\u3e Strains Can Promote Intestinal Inflammation via Differential Interleukin-6 Production

    Get PDF
    Escherichia coli is a facultative anaerobic symbiont found widely among mammalian gastrointestinal tracts. Several human studies have reported increased commensal E. coli abundance in the intestine during inflammation; however, host immunological responses toward commensal E. coli during inflammation are not well-defined. Here, we show that colonization of gnotobiotic mice with different genotypes of commensal E. coli isolated from healthy conventional microbiota mice and representing distinct populations of E. coli elicited strain-specific disease phenotypes and immunopathological changes following treatment with the inflammatory stimulus, dextran sulfate sodium (DSS). Production of the inflammatory cytokines GM-CSF, IL-6, and IFN-y was a hallmark of the severe inflammation induced by E. coli strains of Sequence Type 129 (ST129) and ST375 following DSS administration. In contrast, colonization with E. coli strains ST150 and ST468 caused mild intestinal inflammation and triggered only low levels of pro-inflammatory cytokines, a response indistinguishable from that of E. coli-free control mice treated with DSS. The disease development observed with ST129 and ST375 colonization was not directly associated with their abundance in the GI tract as their levels did not change throughout DSS treatment, and no major differences in bacterial burden in the gut were observed among the strains tested. Data mining and in vivo neutralization identified IL-6 as a key cytokine responsible for the observed differential disease severity. Collectively, our results show that the capacity to exacerbate acute intestinal inflammation is a strain-specific trait that can potentially be overcome by blocking the pro-inflammatory immune responses that mediate intestinal tissue damage

    Commensal Escherichia coli Strains Can Promote Intestinal Inflammation via Differential Interleukin-6 Production

    Get PDF
    Escherichia coli is a facultative anaerobic symbiont found widely among mammalian gastrointestinal tracts. Several human studies have reported increased commensal E. coli abundance in the intestine during inflammation; however, host immunological responses toward commensal E. coli during inflammation are not well-defined. Here, we show that colonization of gnotobiotic mice with different genotypes of commensal E. coli isolated from healthy conventional microbiota mice and representing distinct populations of E. coli elicited strain-specific disease phenotypes and immunopathological changes following treatment with the inflammatory stimulus, dextran sulfate sodium (DSS). Production of the inflammatory cytokines GM-CSF, IL-6, and IFN-γ was a hallmark of the severe inflammation induced by E. coli strains of Sequence Type 129 (ST129) and ST375 following DSS administration. In contrast, colonization with E. coli strains ST150 and ST468 caused mild intestinal inflammation and triggered only low levels of pro-inflammatory cytokines, a response indistinguishable from that of E. coli-free control mice treated with DSS. The disease development observed with ST129 and ST375 colonization was not directly associated with their abundance in the GI tract as their levels did not change throughout DSS treatment, and no major differences in bacterial burden in the gut were observed among the strains tested. Data mining and in vivo neutralization identified IL-6 as a key cytokine responsible for the observed differential disease severity. Collectively, our results show that the capacity to exacerbate acute intestinal inflammation is a strain-specific trait that can potentially be overcome by blocking the pro-inflammatory immune responses that mediate intestinal tissue damage

    Stearidonic-Enriched Soybean Oil Modulates Obesity, Glucose Metabolism, and Fatty Acid Profiles Independently of Akkermansia muciniphila.

    Get PDF
    SCOPE: Previous studies have suggested that diets rich in omega-3 and low in omega-6 long-chain polyunsaturated fatty acids (PUFAs) can limit the development of metabolic syndrome (MetS). Transgenic soybeans yielding oils enriched for omega-3 PUFAs represent a new and readily-available option for incorporating omega-3 PUFAs into diets to provide health benefits. METHODS AND RESULTS: Transgenic soybean oils, enriched for either stearidonic acid (SDA) or eicosapentaenoic acid (EPA), are incorporated into diets to test their effects on limiting the development of MetS in a mouse model of diet-induced obesity. Supplementation with SDA- but not EPA-enriched oils improved features of MetS compared to feeding a control wild-type oil. Because previous studies have linked the gut microorganism Akkermansia muciniphila to the metabolic effects of feeding omega-3 PUFAs, the causal contribution of A. muciniphila to mediating the metabolic benefits provided by SDA-enriched diets is investigated. Although A. muciniphila is not required for SDA-induced metabolic improvements, this microorganism does modulate levels of saturated and mono-unsaturated fatty acids in host adipose tissues. CONCLUSION: Together, these findings support the utilization of SDA-enriched diets to modulate weight gain, glucose metabolism, and fatty acid profiles of liver and adipose tissue

    Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells

    No full text
    Pro-carcinogenic bacteria have the potential to initiate and/or promote colon cancer, in part via immune mechanisms that are incompletely understood. Using ApcMin mice colonized with the human pathobiont enterotoxigenic Bacteroides fragilis (ETBF) as a model of microbe-induced colon tumorigenesis, we show that the Bacteroides fragilis toxin (BFT) triggers a pro-carcinogenic, multi-step inflammatory cascade requiring IL-17R, NF-κB, and Stat3 signaling in colonic epithelial cells (CECs). Although necessary, Stat3 activation in CECs is not sufficient to trigger ETBF colon tumorigenesis. Notably, IL-17-dependent NF-κB activation in CECs induces a proximal to distal mucosal gradient of C-X-C chemokines, including CXCL1, that mediates the recruitment of CXCR2-expressing polymorphonuclear immature myeloid cells with parallel onset of ETBF-mediated distal colon tumorigenesis. Thus, BFT induces a pro-carcinogenic signaling relay from the CEC to a mucosal Th17 response that results in selective NF-κB activation in distal colon CECs, which collectively triggers myeloid-cell-dependent distal colon tumorigenesis
    corecore