41 research outputs found

    Stabilizing mutations increase secretion of functional soluble TCR-Ig fusion proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whereas T cell receptors (TCRs) detect peptide/major histocompatibility complexes (pMHCs) with exquisite specificity, there are challenges regarding their expression and use as soluble detection molecules due to molecular instability. We have investigated strategies for the production of TCR-immunoglobulin (Ig) fusion proteins. Two different TCRs that are characteristic of a mouse model for idiotype (Id) dependent immune regulation were engineered. They are structurally unrelated with different variable (V), diversity (D) and joining (J) segments, but each share one V gene segment, either V<sub>α </sub>or V<sub>β</sub>, with the well characterized murine TCR, 2C.</p> <p>Results</p> <p>Several TCR-Ig formats were assessed. In one, the TCR V domains were fused to Ig constant (C) regions. In others, the complete extracellular part of the TCR was fused either to a complete Ig or an Ig Fc region. All molecules were initially poorly secreted from eukaryotic cells, but replacement of unfavourable amino acids in the V regions improved secretion, as did the introduction of a disulfide bridge between the TCR C domains and the removal of an unpaired cysteine. A screening strategy for selection of mutations that stabilize the actual fusion molecules was developed and used successfully. Molecules that included the complete heterodimeric TCR, with a stabilizing disulfide bridge, were correctly folded as they bound TCR-specific antibodies (Abs) and detected pMHC on cells after specific peptide loading.</p> <p>Conclusions</p> <p>We show that fully functional TCR-Ig fusion proteins can be made in good yields following stabilizing engineering of TCR V and C region genes. This is important since TCR-Ig fusions will be important probes for the presence of specific pMHCs <it>in vitro </it>and <it>in vivo</it>. In the absence of further affinity maturation, the reagents will be very useful for the detection of kinetic stability of complexes of peptide and MHC.</p

    A Practical Approach to T-Cell Receptor Cloning and Expression

    Get PDF
    Although cloning and expression of T-cell Receptors (TcRs) has been performed for almost two decades, these procedures are still challenging. For example, the use of T-cell clones that have undergone limited expansion as starting material to limit the loss of interesting TcRs, must be weighed against the introduction of mutations by excess PCR cycles. The recent interest in using specific TcRs for cancer immunotherapy has, however, increased the demand for practical and robust methods to rapidly clone and express TcRs. Two main technologies for TcR cloning have emerged; the use of a set of primers specifically annealing to all known TcR variable domains, and 5′-RACE amplification. We here present an improved 5′-RACE protocol that represents a fast and reliable way to identify a TcR from 105 cells only, making TcR cloning feasible without a priori knowledge of the variable domain sequence. We further present a detailed procedure for the subcloning of TcRα and β chains into an expression system. We show that a recombination-based cloning protocol facilitates simple and rapid transfer of the TcR transgene into different expression systems. The presented comprehensive method can be performed in any laboratory with standard equipment and with a limited amount of starting material. We finally exemplify the straightforwardness and reliability of our procedure by cloning and expressing several MART-1-specific TcRs and demonstrating their functionality

    Expanding the Versatility of Phage Display II: Improved Affinity Selection of Folded Domains on Protein VII and IX of the Filamentous Phage

    Get PDF
    Background: Phage display is a leading technology for selection of binders with affinity for specific target molecules. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII) or the minor coat protein III (pIII). Whereas pVIII display suffers from drawbacks such as heterogeneity in display levels and polypeptide fusion size limitations, toxicity and infection interference effects have been described for pIII display. Thus, display on other coat proteins such as pVII or pIX might be more attractive. Neither pVII nor pIX display have gained widespread use or been characterized in detail like pIII and pVIII display. Methodology/Principal Findings: Here we present a side-by-side comparison of display on pIII with display on pVII and pIX. Polypeptides of interest (POIs) are fused to pVII or pIX. The N-terminal periplasmic signal sequence, which is required for phage integration of pIII and pVIII and that has been added to pVII and pIX in earlier studies, is omitted altogether. Although the POI display level on pIII is higher than on pVII and pIX, affinity selection with pVII and pIX display libraries is shown to be particularly efficient. Conclusions/Significance: Display through pVII and/or pIX represent platforms with characteristics that differ from those of the pIII platform. We have explored this to increase the performance and expand the use of phage display. In the paper, we describe effective affinity selection of folded domains displayed on pVII or pIX. This makes both platforms more attractive alternatives to conventional pIII and pVIII display than they were before. © 2011 Wälchli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Expanding the Versatility of Phage Display I: Efficient Display of Peptide-Tags on Protein VII of the Filamentous Phage

    Get PDF
    Background: Phage display is a platform for selection of specific binding molecules and this is a clear-cut motivation for increasing its performance. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII), or the minor coat protein III (pIII). Display on other coat proteins such as pVII allows for display of heterologous peptide sequences on the virions in addition to those displayed on pIII and pVIII. In addition, pVII display is an alternative to pIII or pVIII display. Methodology/Principal Findings: Here we demonstrate how standard pIII or pVIII display phagemids are complemented with a helper phage which supports production of virions that are tagged with octa FLAG, HIS6 or AviTag on pVII. The periplasmic signal sequence required for pIII and pVIII display, and which has been added to pVII in earlier studies, is omitted altogether. Conclusions/Significance: Tagging on pVII is an important and very useful add-on feature to standard pIII and pVII display. Any phagemid bearing a protein of interest on either pIII or pVIII can be tagged with any of the tags depending simply on choice of helper phage. We show in this paper how such tags may be utilized for immobilization and separation as well as purification and detection of monoclonal and polyclonal phage populations. © 2011 Wälchli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Phage display engineered T cell receptors as tools for the study of tumor peptide-MHC interactions

    No full text
    Cancer immunotherapy has finally come of age, demonstrated by recent progress in strategies that engage the endogenous adaptive immune response in tumor killing. Occasionally, significant and durable tumor regression has been achieved. A giant leap forward was the demonstration that the pre-existing polyclonal T cell repertoire could be re-directed by use of cloned T cell receptors (TCRs), to obtain a defined tumor-specific pool of T cells. However, the procedure must be performed with caution to avoid deleterious cross-reactivity. Here, the use of engineered soluble TCRs may represent a safer, yet powerful, alternative. There is also a need for deeper understanding of the processes that underlie antigen presentation in disease and homeostasis, how tumor-specific peptides are generated, and how epitope spreading evolves during tumor development. Due to its plasticity, the pivotal interaction where a TCR engages a peptide/MHC (pMHC) also requires closer attention. For this purpose, phage display as a tool to evolve cloned TCRs represents an attractive avenue to generate suitable reagents allowing the study of defined pMHC presentation, TCR engagement, as well as for the discovery of novel therapeutic leads. Here, we highlight important aspects of the current status in this field

    Targeting the MHC Ligandome by Use of TCR-Like Antibodies

    No full text
    Monoclonal antibodies (mAbs) are valuable as research reagents, in diagnosis and in therapy. Their high specificity, the ease in production, favorable biophysical properties and the opportunity to engineer different properties make mAbs a versatile class of biologics. mAbs targeting peptide&#8722;major histocompatibility molecule (pMHC) complexes are often referred to as &#8220;TCR-like&#8221; mAbs, as pMHC complexes are generally recognized by T-cell receptors (TCRs). Presentation of self- and non-self-derived peptide fragments on MHC molecules and subsequent activation of T cells dictate immune responses in health and disease. This includes responses to infectious agents or cancer but also aberrant responses against harmless self-peptides in autoimmune diseases. The ability of TCR-like mAbs to target specific peptides presented on MHC allows for their use to study peptide presentation or for diagnosis and therapy. This extends the scope of conventional mAbs, which are generally limited to cell-surface or soluble antigens. Herein, we review the strategies used to generate TCR-like mAbs and provide a structural comparison with the analogous TCR in pMHC binding. We further discuss their applications as research tools and therapeutic reagents in preclinical models as well as challenges and limitations associated with their use

    Chimeric antigen receptor preparation from hybridoma to T-cell expression

    No full text
    The successful use of chimeric antigen receptor (CAR) for hematological cancer treatment has influenced the direction taken in translational research toward an increasing focus on personalized targeted immunotherapy. Thus, a growing number of labs worldwide are now interested in testing their old antibody collections in this format to broaden the spectrum of utility and improve safety and efficacy. We herein present a straightforward protocol for the identification of an antibody from a hybridoma and the design of the single chain fragment that will be placed on the extracellular part of the CAR construct. We further show how to test the expression and the activity of the construct in primary T cells. We illustrate our demonstration with two new CARs targeted against the B cell receptor, more precisely the light chains κ and λ, that represent potential alternatives to the CD19 CAR used in the treatment of B-cell malignancies. Statement of Significance Chimeric antigen receptor molecules are becoming increasingly popular, and an easy-to-follow method to isolate and express them is herein presented
    corecore