1,249 research outputs found

    Single‐trial regression of spatial exploration behavior indicates posterior EEG alpha modulation to reflect egocentric coding

    Full text link
    Learning to navigate uncharted terrain is a key cognitive ability that emerges as a deeply embodied process, with eye movements and locomotion proving most useful to sample the environment. We studied healthy human participants during active spatial learning of room-scale virtual reality (VR) mazes. In the invisible maze task, participants wearing a wireless electroencephalography (EEG) headset were free to explore their surroundings, only given the objective to build and foster a mental spatial representation of their environment. Spatial uncertainty was resolved by touching otherwise invisible walls that were briefly rendered visible inside VR, similar to finding your way in the dark. We showcase the capabilities of mobile brain/body imaging using VR, demonstrating several analysis approaches based on general linear models (GLMs) to reveal behavior-dependent brain dynamics. Confirming spatial learning via drawn sketch maps, we employed motion capture to image spatial exploration behavior describing a shift from initial exploration to subsequent exploitation of the mental representation. Using independent component analysis, the current work specifically targeted oscillations in response to wall touches reflecting isolated spatial learning events arising in deep posterior EEG sources located in the retrosplenial complex. Single-trial regression identified significant modulation of alpha oscillations by the immediate, egocentric, exploration behavior. When encountering novel walls, as well as with increasing walking distance between subsequent touches when encountering novel walls, alpha power decreased. We conclude that these oscillations play a prominent role during egocentric evidencing of allocentric spatial hypotheses

    The determination of lindane residues on pickles : critical points in the Schechter-Hornstein colorimetric method

    Get PDF
    The work reported was done under Department of Agricultural Chemistry Research Project 132, 'Analytical Services'--P. [2].Digitized 2007 AES.Includes bibliographical references (page 24)

    Application of ion exchange to flame spectrophotometry & determination of potassium in fertilizers

    Get PDF
    Report on Department of Agricultural Chemistry Research Project 132, 'Analytical Services'--P. [2].Digitized 2007 AES.Includes bibliographical references (pages 59-[60])

    A duality theoretic view on limits of finite structures: Extended version

    Get PDF
    A systematic theory of structural limits for finite models has been developed by Nešetřil and Ossona de Mendez. It is based on the insight that the collection of finite structures can be embedded, via a map they call the Stone pairing, in a space of measures, where the desired limits can be computed. We show that a closely related but finer grained space of (finitely additive) measures arises—via Stone-Priestley duality and the notion of types from model theory—by enriching the expressive power of first-order logic with certain “probabilistic operators”. We provide a sound and complete calculus for this extended logic and expose the functorial nature of this construction. The consequences are two-fold. On the one hand, we identify the logical gist of the theory of structural limits. On the other hand, our construction shows that the duality theoretic variant of the Stone pairing captures the adding of a layer of quantifiers, thus making a strong link to recent work on semiring quantifiers in logic on words. In the process, we identify the model theoretic notion of types as the unifying concept behind this link. These results contribute to bridging the strands of logic in computer science which focus on semantics and on more algorithmic and complexity related areas, respectively

    The search for an identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    Get PDF
    The Mars Sample Return mission will provide us with a unique source of material from our solar system; material which could advance our knowledge of the processes of chemical evolution. As has been pointed out, Mars geological investigations based on the Viking datasets have shown that primordial Mars was in many biologically important ways similar to the primordial Earth; the presence of surface liquid water, moderate surface temperatures, and atmosphere of carbon dioxide and nitrogen, and high geothermal heat flow. Indeed, it would seem that conditions on Earth and Mars were fundamentally similar during the first one billion years or so. As has been pointed out, Mars may well contain the best preserved record of the events that transpired on the early planets. Examination of that early record will involve searching for many things, from microfossils to isotopic abundance data. We propose an investigation of the returned Mars samples for biologically important organic compounds, with emphases on amino acids, the purine and pyrimidine bases, and nucleosides

    The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    Get PDF
    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars

    Dermoscopy of Pitted Keratolysis

    Get PDF
    Irritated hyperhidrotic soles with multiple small pits are pathognomonic for pitted keratolysis (PK). Here we show the dermatoscopic view of typical pits that can ensure the diagnosis. PK is a plantar infection caused by Gram-positive bacteria, particularly Corynebacterium. Increases in skin surface pH, hyperhidrosis, and prolonged occlusion allow these bacteria to proliferate. The diagnosis is fundamentally clinical and treatment generally consists of a combination of hygienic measures, correcting plantar hyperhidrosis and topical antimicrobials

    The invisible maze task (IMT): Interactive exploration of sparse virtual environments to investigate action-driven formation of spatial representations

    Full text link
    © Springer Nature Switzerland AG 2018. The neuroscientific study of human navigation has been constrained by the prerequisite of traditional brain imaging studies that require participants to remain stationary. Such imaging approaches neglect a central component that characterizes navigation - the multisensory experience of self-movement. Navigation by active movement through space combines multisensory perception with internally generated self-motion cues. We investigated the spatial microgenesis during free ambulatory exploration of interactive sparse virtual environments using motion capture synchronized to high resolution electroencephalographic (EEG) data as well AS psychometric and self-report measures. In such environments, map-like allocentric representations must be constructed out of transient, egocentric first-person perspective 3-D spatial information. Considering individual differences of spatial learning ability, we studied if changes in exploration behavior coincide with spatial learning of an environment. To this end, we analyzed the quality of sketch maps (a description of spatial learning) that were produced after repeated learning trials for differently complex maze environments. We observed significant changes in active exploration behavior from the first to the last exploration of a maze: a decrease in time spent in the maze predicted an increase in subsequent sketch map quality. Furthermore, individual differences in spatial abilities as well as differences in the level of experienced immersion had an impact on the quality of spatial learning. Our results demonstrate converging evidence of observable behavioral changes associated with spatial learning in a framework that allows the study of cortical dynamics of navigation
    corecore