363 research outputs found

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Non-Invasive Measurement of Hemoglobin: Assessment of Two Different Point-of-Care Technologies

    Get PDF
    Measurement of blood hemoglobin (Hb) concentration is a routine procedure. Using a non-invasive point-of-care device reduces pain and discomfort for the patient and allows time saving in patient care. The aims of the present study were to assess the concordance of Hb levels obtained non-invasively with the Pronto-7 monitor (version 2.1.9, Masimo Corporation, Irvine, USA) or with the NBM-200MP monitor (Orsense, Nes Ziona, Israel) and the values obtained from the usual colorimetric method using blood samples and to determine the source of discordance.We conducted two consecutive prospective open trials enrolling patients presenting in the emergency department of a university hospital. The first was designed to assess Pronto-7™ and the second NBM-200MP™. In each study, the main outcome measure was the agreement between both methods. Independent factors associated with the bias were determined using multiple linear regression. Three hundred patients were prospectively enrolled in each study. For Pronto-7™, the absolute mean difference was 0.56 g.L(-1) (95% confidence interval [CI] 0.41 to 0.69) with an upper agreement limit at 2.94 g.L(-1) (95% CI [2.70;3.19]), a lower agreement limit at -1.84 g.L(-1) (95% CI [-2.08;-1.58]) and an intra-class correlation coefficient at 0.80 (95% CI [0.74;0.84]). The corresponding values for the NBM-200MP™ were 0.21 [0.02;0.39], 3.42 [3.10;3.74], -3.01 [-3.32;-2.69] and 0.69 [0.62;0.75]. Multivariate analysis showed that age and laboratory values of hemoglobin were independently associated with the bias when using Pronto-7™, while perfusion index and laboratory value of hemoglobin were independently associated with the bias when using NBM-200MP™.Despite a relatively limited bias in both cases, the large limits of agreement found in both cases render the clinical usefulness of such devices debatable. For both devices, the bias is independently and inversely associated with the true value of hemoglobin.ClinicalTrials.gov NCT01321580 and NCT01321593

    Post-Transcriptional Regulation of 5-Lipoxygenase mRNA Expression via Alternative Splicing and Nonsense-Mediated mRNA Decay

    Get PDF
    5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes (LT), a group of inflammatory lipid mediators derived from arachidonic acid. Here, we investigated the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD). In the present study, we report the identification of 2 truncated transcripts and 4 novel 5-LO splice variants containing premature termination codons (PTC). The characterization of one of the splice variants, 5-LOΔ3, revealed that it is a target for NMD since knockdown of the NMD factors UPF1, UPF2 and UPF3b in the human monocytic cell line Mono Mac 6 (MM6) altered the expression of 5-LOΔ3 mRNA up to 2-fold in a cell differentiation-dependent manner suggesting that cell differentiation alters the composition or function of the NMD complex. In contrast, the mature 5-LO mRNA transcript was not affected by UPF knockdown. Thus, the data suggest that the coupling of alternative splicing and NMD is involved in the regulation of 5-LO gene expression

    How a co-actor’s task affects monitoring of own errors: evidence from a social event-related potential study

    Get PDF
    Efficient flexible behavior requires continuous monitoring of performance for possible deviations from the intended goal of an action. This also holds for joint action. When jointly performing a task, one needs to not only know the other’s goals and intentions but also generate behavioral adjustments that are dependent on the other person’s task. Previous studies have shown that in joint action people not only represent their own task but also the task of their co-actor. The current study investigated whether these so-called shared representations affect error monitoring as reflected in the response-locked error-related negativity (Ne/ERN) following own errors. Sixteen pairs of participants performed a social go/no-go task, while EEG and behavioral data were obtained. Responses were compatible or incompatible relative to the go/no-go action of the co-actor. Erroneous responses on no-go stimuli were examined. The results demonstrated increased Ne/ERN amplitudes and longer reaction times following errors on compatible compared to incompatible no-go stimuli. Thus, Ne/ERNs were larger after errors on trials that did not require a response from the co-actor either compared to errors on trials that did require a response from the co-actor. As the task of the other person is the only difference between these two types of errors, these findings show that people also represent their co-actor’s task during error monitoring in joint action. An extension of existing models on performance monitoring in individual action is put forward to explain the current findings in joint action. Importantly, we propose that inclusion of a co-actor’s task in performance monitoring may facilitate adaptive behavior in social interactions enabling fast anticipatory and corrective actions

    No Evidence That Gratitude Enhances Neural Performance Monitoring or Conflict-Driven Control

    Get PDF
    It has recently been suggested that gratitude can benefit self-regulation by reducing impulsivity during economic decision making. We tested if comparable benefits of gratitude are observed for neural performance monitoring and conflict-driven self-control. In a pre-post design, 61 participants were randomly assigned to either a gratitude or happiness condition, and then performed a pre-induction flanker task. Subsequently, participants recalled an autobiographical event where they had felt grateful or happy, followed by a post-induction flanker task. Despite closely following existing protocols, participants in the gratitude condition did not report elevated gratefulness compared to the happy group. In regard to self-control, we found no association between gratitude--operationalized by experimental condition or as a continuous predictor--and any control metric, including flanker interference, post-error adjustments, or neural monitoring (the error-related negativity, ERN). Thus, while gratitude might increase economic patience, such benefits may not generalize to conflict-driven control processes

    Electrophysiological evidence of enhanced performance monitoring in recently abstinent alcoholic men

    Get PDF
    RATIONALE: Chronic alcoholism is associated with mild to moderate cognitive impairment. Under certain conditions, impairment can be ameliorated by invoking compensatory processes. OBJECTIVE: To identify electrophysiological mechanisms of such compensation that would be required to resolve response conflict. METHODS: 14 abstinent alcoholic men and 14 similarly aged control men performed a variation of the Eriksen flanker task during an electroencephalography (EEG) recording to examine whether alcoholics could achieve and maintain control-level performance and whether EEG markers could identify evidence for the action of compensatory processes in the alcoholics. Monitoring processes engaged following a response were indexed by the correct related negativity (CRN) and error related negativity (ERN), two medial-frontal negative event-related potentials. RESULTS: The alcoholics were able to perform at control levels on accuracy and reaction time (RT). Alcoholics generated larger ERN amplitudes following incorrect responses and larger CRNs following correct responses than controls. Both groups showed evidence of post-error slowing. Larger CRN amplitudes in the alcoholics were related to longer RTs. Also observed in the alcoholics was an association between smaller CRN amplitudes and length of sobriety, suggesting a normalization of monitoring activity with extended abstinence. CONCLUSIONS: To the extent that greater amplitude of these electrophysiological markers of performance monitoring indexes greater resource allocation and performance compensation, the larger amplitudes observed in the alcoholic than control group support the view that elevated performance monitoring enables abstinent alcoholics to overcome response conflict, as was evident in their control-level performance

    Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system

    Get PDF
    The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids

    Context specificity of post-error and post-conflict cognitive control adjustments

    Get PDF
    There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, controlrelated performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control. © 2014 Forster, Cho

    Nobody Is Perfect: ERP Effects Prior to Performance Errors in Musicians Indicate Fast Monitoring Processes

    Get PDF
    Background: One central question in the context of motor control and action monitoring is at what point in time errors can be detected. Previous electrophysiological studies investigating this issue focused on brain potentials elicited after erroneous responses, mainly in simple speeded response tasks. In the present study, we investigated brain potentials before the commission of errors in a natural and complex situation. Methodology/Principal Findings: Expert pianists bimanually played scales and patterns while the electroencephalogram (EEG) was recorded. Event-related potentials (ERPs) were computed for correct and incorrect performances. Results revealed differences already 100 ms prior to the onset of a note (i.e., prior to auditory feedback). We further observed that erroneous keystrokes were delayed in time and pressed more slowly. Conclusions: Our data reveal neural mechanisms in musicians that are able to detect errors prior to the execution of erroneous movements. The underlying mechanism probably relies on predictive control processes that compare the predicted outcome of an action with the action goal
    corecore