73 research outputs found

    The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela

    Full text link
    We show that (1) the newly discovered supernova remnant (SNR), GRO J0852--4642/RX J0852.0--4622, was created by a core-collapse supernova of a massive star, and (2) the same supernova event which produced the 44^{44}Ti detected by COMPTEL from this source is probably also responsible for a large fraction of the observed 26^{26}Al emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type Ia supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15M⊙15 M_\odot Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km s−1^{-1}, as derived naively from the X-ray data, a much more energetic supernova is required to have occurred at ∌250\sim250 pc away in a dense environment at the edge of the Gum nebula. This progenitor has a preferred ejecta mass of ≀10M⊙\le10 M_\odot and therefore, it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of nH≄100cm−3n_H \ge 100 cm^{-3} in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL 26 ^{26}Al emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case where both 44^{44}Ti and 26^{26}Al are detected from the same young SNR and together they can be used to select preferred theoretical core-collapse supernova models.Comment: Revised, 10 pages, 2 figures, to appear in ApJ Lett Vol.514 on April 1, 199

    Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    Full text link
    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.Comment: 3 pages; Published in the proceedings of Huntsville 2008 symposium on GRBs; Indices in Equation 7 and 8 correcte

    The Burst Alert Telescope (BAT) on the Swift MIDEX Mission

    Get PDF
    The Burst Alert Telescope (BAT) is one of 3 instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1-4 arcmin within 20 sec after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20-70 sec so to make follow-up x-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4x4x2mm), and the coded-aperture mask is composed of approximately 52,000 pieces of lead (5x5x1mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15-150 keV energy range with approximately 7 keV resolution, a sensitivity of approximately 10E-8 erg*cm^-2*s^-1, and a 1.4 sr (half-coded) FOV. We expect to detect >100 GRBs/yr for a 2-year mission. The BAT also performs an all-sky hard x-ray survey with a sensitivity of approximately 2 mCrab (systematic limit) and it serves as a hard x-ray transient monitor.Comment: 18 Pages, 12 Figures, To be published in Space Science Review

    NASA ExoPAG Study Analysis Group 11: Preparing for the WFIRST Microlensing Survey

    Full text link
    NASA's proposed WFIRST-AFTA mission will discover thousands of exoplanets with separations from the habitable zone out to unbound planets, using the technique of gravitational microlensing. The Study Analysis Group 11 of the NASA Exoplanet Program Analysis Group was convened to explore scientific programs that can be undertaken now, and in the years leading up to WFIRST's launch, in order to maximize the mission's scientific return and to reduce technical and scientific risk. This report presents those findings, which include suggested precursor Hubble Space Telescope observations, a ground-based, NIR microlensing survey, and other programs to develop and deepen community scientific expertise prior to the mission.Comment: 35 pages, 5 Figures. A brief overview of the findings is presented in the Executive Summary (2 pages

    Gamma‐ray optical counterpart search experiment (GROCSE)

    Full text link
    The requirements of a gamma‐ray burst optical counterpart detector are reviewed. By taking advantage of real‐time notification of bursts, new instruments can make sensitive searches while the gamma‐ray transient is still in progress. A wide field of view camera at Livermore National Laboratories has recently been adapted for detecting GRB optical counterparts to a limiting magnitude of 8. A more sensitive camera, capable of reaching mv=14, is under development. © 1994 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87629/2/633_1.pd

    Ozone Depletion from Nearby Supernovae

    Get PDF
    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova must occur at <8 pc. Based on the latest data, the time-averaged galactic rate of core-collapse supernovae occurring within 8 pc is ~1.5/Gyr. In comparing our calculated ozone depletions with those of previous studies, we find them to be significantly less severe than found by Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given the amplitude of the effect, the rate of nearby supernovae, and the ~Gyr time scale for multicellular organisms on Earth, this particular pathway for mass extinctions may be less important than previously thought.Comment: 24 pages, 4 Postscript figures, to appear in The Astrophysical Journal, 2003 March 10, vol. 58

    Terrestrial Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    Get PDF
    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have performed the first computation of the effects upon the Earth's atmosphere of one such impulsive event. A ten second burst delivering 100 kJ/m^2 to the Earth penetrates to the stratosphere and results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms. Additional effects include a shot of nitrate fertilizer and NO2 opacity in the visible providing a cooling perturbation to the climate over a similar timescale. These results lend support to the hypothesis that a GRB may have initiated the late Ordovician mass extinction (Melott et al. 2004).Comment: 4 color figures; Revised version to be published in Astrophysical Journal Letters. Moderate revisions, including more detail on atmospheric processes, on probable climactic and biogeochemical effects, an improved color scheme for graphics, and an animation of computed DNA damage leve

    Swift GRBs and the blast wave model

    Get PDF
    The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of a Swift sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within the framework of the blast wave model, and we can estimate with confidence the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in half of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations.Comment: 6 pages, submitted to the proceedings of the 6th Huntsville GRB Symposium (2008

    The Swift X-ray flaring afterglow of GRB 050607

    Get PDF
    The unique capability of the Swift satellite to perform a prompt and autonomous slew to a newly detected Gamma-Ray Burst (GRB) has yielded the discovery of interesting new properties of GRB X-ray afterglows, such as the steep early lightcurve decay and the frequent presence of flares detected up to a few hours after the GRB trigger. We present observations of GRB 050607, the fourth case of a GRB discovered by Swift with flares superimposed on the overall fading X-ray afterglow. The flares of GRB 050607 were not symmetric as in previously reported cases, showing a very steep rise and a shallower decay, similar to the Fast Rise, Exponential Decay that are frequently observed in the gamma-ray prompt emission. The brighter flare had a flux increase by a factor of approximately 25,peaking for 30 seconds at a count rate of approximately 30 counts s-1, and it presented hints of addition short time scale activity during the decay phase. There is evidence of spectral evolution during the flares. In particular, at the onset of the flares the observed emission was harder, with a gradual softening as each flare decayed. The very short time scale and the spectral variability during the flaring activity are indicators of possible extended periods of energy emission by the GRB central engine. The flares were followed by a phase of shallow decay, during which the forward shock was being refreshed by a long-lived central engine or by shells of lower Lorentz factors, and by a steepening after approximately 12 ks to a decay slope considered typical of X-ray afterglows.Comment: 23 pages, 5 figures, Accepted by the Astrophysical Journa
    • 

    corecore