4 research outputs found

    Establishment of a Visual Analog Scale for DBS Programming (VISUAL-STIM Trial)

    Get PDF
    Background: Deep brain stimulation (DBS) has become a standard treatment for advanced stages of Parkinson's disease, essential tremor, and dystonia. In addition to the correct surgical device implantation, effective programming is regarded to be the most important factor for clinical outcome. Despite established strategies for adjusting neurostimulation, DBS programming remains time- and resource-consuming. Although kinematic and neuronal biosignals have recently been examined as potential feedback for closed-loop DBS (CL-DBS), there is an ongoing need for programming strategies to adapt the stimulation parameters and electrode configurations accurately and effectively. Methods: Here, we tested the usefulness of a patient-rated visual analog scale (VAS) for real-time adjustment of DBS parameters. The stimulation parameters (contact and amplitude) in Parkinson's patients with STN-DBS (n = 17) were optimized based on the patient's subjective VAS rating. A Minkowski distance (Md) was calculated to compare the individual combination of contact selection and amplitude to the stimulation parameters that resulted from classical programming based on clinical signs and symptoms. Results: We found no statistically significant difference between VAS-based and classical programming in regard to the specific contact or amplitude used or in regard to the clinical disease severity (UPDRS). Conclusions: Our data suggest that VAS-based and classical programming strategies both lead to similar short-term results. Although further research will be required to assess the validity of VAS-based DBS programming, our results support the investigation of the patient's subjective rating as an additional and valid feedback signal for individualized DBS adjustment

    Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson’s disease mice

    No full text
    Background Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson’s disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. Methods We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)−/−^{-/-} mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4+^{+}/CD8−^{-}, CD4−^{-}/CD8+^{+}, or CD4+^{+}/CD8+^{+} (JHD−/−^{-/-}) mice into the RAG-1−/−^{-/-} mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. Results AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68–78) and surrounding the pathogenically relevant S129 (120–134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. Conclusions Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology

    Assessment of F-18-PI-2620 as a Biomarker in Progressive Supranuclear Palsy

    Get PDF
    Importance Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy. Region-specific tau aggregates establish the neuropathologic diagnosis of definite PSP post mortem. Future interventional trials against tau in PSP would strongly benefit from biomarkers that support diagnosis. Objective To investigate the potential of the novel tau radiotracer F-18-PI-2620 as a biomarker in patients with clinically diagnosed PSP. Design, Setting, and Participants In this cross-sectional study, participants underwent dynamic F-18-PI-2620 positron emission tomography (PET) from 0 to 60 minutes after injection at 5 different centers (3 in Germany, 1 in the US, and 1 in Australia). Patients with PSP (including those with Richardson syndrome [RS]) according to Movement Disorder Society PSP criteria were examined together with healthy controls and controls with disease. Four additionally referred individuals with PSP-RS and 2 with PSP-non-RS were excluded from final data analysis owing to incomplete dynamic PET scans. Data were collected from December 2016 to October 2019 and were analyzed from December 2018 to December 2019. Main Outcomes and Measures Postmortem autoradiography was performed in independent PSP-RS and healthy control samples. By in vivo PET imaging, F-18-PI-2620 distribution volume ratios were obtained in globus pallidus internus and externus, putamen, subthalamic nucleus, substantia nigra, dorsal midbrain, dentate nucleus, dorsolateral, and medial prefrontal cortex. PET data were compared between patients with PSP and control groups and were corrected for center, age, and sex. Results Of 60 patients with PSP, 40 (66.7%) had RS (22 men [55.0%]; mean [SD] age, 71 [6] years; mean [SD] PSP rating scale score, 38 [15]; score range, 13-71) and 20 (33.3%) had PSP-non-RS (11 men [55.0%]; mean [SD] age, 71 [9] years; mean [SD] PSP rating scale score, 24 [11]; score range, 11-41). Ten healthy controls (2 men; mean [SD] age, 67 [7] years) and 20 controls with disease (of 10 [50.0%] with Parkinson disease and multiple system atrophy, 7 were men; mean [SD] age, 61 [8] years; of 10 [50.0%] with Alzheimer disease, 5 were men; mean [SD] age, 69 [10] years). Postmortem autoradiography showed blockable F-18-PI-2620 binding in patients with PSP and no binding in healthy controls. The in vivo findings from the first large-scale observational study in PSP with F-18-PI-2620 indicated significant elevation of tracer binding in PSP target regions with strongest differences in PSP vs control groups in the globus pallidus internus (mean [SD] distribution volume ratios: PSP-RS, 1.21 [0.10]; PSP-non-RS, 1.12 [0.11]; healthy controls, 1.00 [0.08]; Parkinson disease/multiple system atrophy, 1.03 [0.05]; Alzheimer disease, 1.08 [0.06]). Sensitivity and specificity for detection of PSP-RS vs any control group were 85% and 77%, respectively, when using classification by at least 1 positive target region. Conclusions and Relevance This multicenter evaluation indicates a value of F-18-PI-2620 to differentiate suspected patients with PSP, potentially facilitating more reliable diagnosis of PSP. Question Can tau-positron emission tomography imaging with the novel tau radiotracer F-18-PI-2620 differentiate patients with progressive supranuclear palsy (PSP) from healthy controls and controls with disease? Findings In this cross-sectional study of 60 patients with PSP, 10 healthy controls, and 20 controls with disease, there was significantly higher F-18-PI-2620 binding in target regions of patients with PSP compared with controls regardless of disease severity. Individual patients with PSP with Richardson syndrome were separated with high sensitivity and specificity. Meaning F-18-PI-2620 tau-positron emission tomography differentiates patients with PSP from controls at the single-patient level, potentially facilitating a more reliable diagnosis. This cross-sectional study investigates the potential of novel tau radiotracer F-18-PI-2620 as a biomarker in patients with clinically diagnosed progressive supranuclear palsy
    corecore