346 research outputs found
Constraining New Physics with a Positive or Negative Signal of Neutrino-less Double Beta Decay
We investigate numerically how accurately one could constrain the strengths
of different short-range contributions to neutrino-less double beta decay in
effective field theory. Depending on the outcome of near-future experiments
yielding information on the neutrino masses, the corresponding bounds or
estimates can be stronger or weaker. A particularly interesting case, resulting
in strong bounds, would be a positive signal of neutrino-less double beta decay
that is consistent with complementary information from neutrino oscillation
experiments, kinematical determinations of the neutrino mass, and measurements
of the sum of light neutrino masses from cosmological observations. The keys to
more robust bounds are improvements of the knowledge of the nuclear physics
involved and a better experimental accuracy.Comment: 23 pages, 3 figures. Minor changes. Matches version published in JHE
Multi-layer scintillation detector for the MOON double beta decay experiment: Scintillation photon responses studied by a prototype detector MOON-1
An ensemble of multi-layer scintillators is discussed as an option of the
high-sensitivity detector Mo Observatory Of Neutrinos (MOON) for spectroscopic
measurements of neutrino-less double beta decays. A prototype detector MOON-1,
which consists of 6 layer plastic-scintillator plates, was built to study the
sensitivity of the MOON-type detector. The scintillation photon collection and
the energy resolution, which are key elements for the high-sensitivity
experiments, are found to be 1835+/-30 photo-electrons for 976 keV electrons
and sigma = 2.9+/-0.1% (dE/E = 6.8+/-0.3 % in FWHM) at the Qbb ~ 3 MeV region,
respectively. The multi-layer plastic-scintillator structure with good energy
resolution as well as good background suppression of beta-gamma rays is crucial
for the MOON-type detector to achieve the inverted hierarchy neutrino mass
sensitivity.Comment: 8 pages, 16 figures, submitted to Nucl.Instrum.Met
The Majorana experiment: an ultra-low background search for neutrinoless double-beta decay
The observation of neutrinoless double-beta decay would resolve the Majorana
nature of the neutrino and could provide information on the absolute scale of
the neutrino mass. The initial phase of the Majorana experiment, known as the
Demonstrator, will house 40 kg of Ge in an ultra-low background shielded
environment at the 4850' level of the Sanford Underground Laboratory in Lead,
SD. The objective of the Demonstrator is to determine whether a future 1-tonne
experiment can achieve a background goal of one count per tonne-year in a
narrow region of interest around the 76Ge neutrinoless double-beta decay peak.Comment: Presentation for the Rutherford Centennial Conference on Nuclear
Physic
Neutrinoless double-beta decay and physics beyond the standard model
Neutrinoless double-beta decay is the most powerful tool to probe not only for Majorana neutrino masses but for lepton number violating physics in general. We discuss relations between lepton number violation, double-beta decay and neutrino mass, review a general Lorentz-invariant parametrization of the double-beta decay rate, highlight a number of different new physics models showing how different mechanisms can trigger double-beta decay and, finally, discuss possibilities of discriminating and testing these models and mechanisms in complementary experiments
- âŠ