228 research outputs found

    Maintenance of memory CD8 T cells: Divided over division

    Get PDF
    Once generated during an infection, memory CD8(+) T cells can provide long-lasting protection against reinfection with an intracellular pathogen, but the longevity of this defense depends on the ability of these pathogen-specific memory cells to be maintained. It is generally believed that the bone marrow plays an important role in this respect, where memory CD8 T cells receive reinvigorating signals from cytokines that induce homeostatic proliferation. However, in the current issue of the European Journal of Immunology, Siracusa et al. (Eur. J. Immunol. 2017. 47: 1900-1905) argue against this dogma, as they provide evidence that CD8 memory T cells in murine bone marrow are not proliferating, but largely quiescent, which protects them from elimination by the cytostatic drug Cyclophosphamide. Interestingly, this is in sharp contrast to the proliferating cell counterparts in the spleen, which are eliminated by this treatment. Here, we will discuss the impact of these results, how they relate to opposing findings by others in the field, and what the relevance of these findings is for humans and clinical applications

    IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease characterised by the production of pathogenic autoantibodies against nuclear self-antigens. The anti-inflammatory and tolerogenic cytokine Interleukin-10 appears to play a paradoxical pathogenic role in SLE and is therefore currently therapeutically targeted in clinical trials. It is generally assumed that the pathogenic effect of IL-10 in SLE is due to its growth and differentiation factor activity on autoreactive B-cells, but effects on other cells might also play a role. To date, a unique cellular source of pathogenic IL-10 in SLE has not been identified. In this review, we focus on the contribution of different CD4+T-cell subsets to IL-10 and autoantibody production in SLE. In particular, we discuss that IL-10 produced by different subsets of adaptive regulatory T-cells, follicular helper T-cells and extra-follicular B-helper T-cells is likely to have different effects on autoreactive B-cell responses. A better understanding of the role of IL-10 in B-cell responses and lupus would allow to identify the most promising therapies for individual SLE patients in the future

    Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cell

    Get PDF
    The T cell compartment is phenotypically and functionally heterogeneous; subsets of naive and memory cells have different functional properties, and also differ with respect to homeostatic potential and the ability to persist in vivo. Human stem cell memory T (TSCM) cells, which possess superior immune reconstitution and antitumor response capabilities, can be identified by polychromatic flow cytometry on the basis of the simultaneous expression of several naive markers together with the memory marker CD95. We describe here a protocol based on the minimum set of markers required for optimal identification of human and nonhuman primate (NHP) TSCM cells with commonly available flow cytometers. By using flow sorters, TSCM cells can thereby be isolated efficiently at high yield and purity. With the use of the 5.5-h isolation procedure, depending on the number of cells needed, the sorting procedure can last for 2-15 h. We also indicate multiple strategies for their efficient expansion in vitro at consistent numbers for functional characterization or adoptive transfer experiments

    Eomesodermin controls a unique differentiation program in human IL-10 and IFN-γ coproducing regulatory T cells

    Get PDF
    Whether human IL-10-producing regulatory T cells (“Tr1”) represent a distinct differentiation lineage or an unstable activation stage remains a key unsolved issue. Here, we report that Eomesodermin (Eomes) acted as a lineage-defining transcription factor in human IFN-γ/IL-10 coproducing Tr1-like cells. In vivo occurring Tr1-like cells expressed Eomes, and were clearly distinct from all other CD4 + T-cell subsets, including conventional cytotoxic CD4 + T cells. They expressed Granzyme (Gzm) K, but had lost CD40L and IL-7R expression. Eomes antagonized the Th17 fate, and directly controlled IFN-γ and GzmK expression. However, Eomes binding to the IL-10 promoter was not detectable in human CD4 + T cells, presumably because critical Tbox binding sites of the mouse were not conserved. A precommitment to a Tr1-like fate, i.e. concominant induction of Eomes, GzmK, and IFN-γ, was promoted by IL-4 and IL-12-secreting myeloid dendritic cells. Consistently, Th1 effector memory cells contained precommitted Eomes + GzmK + T cells. Stimulation with T-cell receptor (TCR) agonists and IL-27 promoted the generation of Tr1-like effector cells by inducing switching from CD40L to IL-10. Importantly, CD4 + Eomes + T-cell subsets were present in lymphoid and nonlymphoid tissues, and their frequencies varied systemically in patients with inflammatory bowel disease and graft-versus-host disease. We propose that Eomes + Tr1-like cells are effector cells of a unique GzmK-expressing CD4 + T-cell subset

    Molecular and functional heterogeneity of IL-10-producing CD4 + T cells

    Get PDF
    IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4 + T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3 neg CD4 + T cells that displays regulatory activity unlike other IL-10-producing CD4 + T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4 + T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3 neg CD4 + T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease demonstrate a deficiency in this specific regulatory T-cell subpopulation

    The Cell Cycle Time of CD8+ T Cells Responding In Vivo Is Controlled by the Type of Antigenic Stimulus

    Get PDF
    A hallmark of cells comprising the mammalian adaptive immune system is the requirement for these rare naïve T (and B) lymphocytes directed to a specific microorganism to undergo proliferative expansion upon first encounter with this antigen. In the case of naïve CD8+ T cells the ability of these rare quiescent lymphocytes to rapidly activate and expand into effector T cells in numbers sufficient to control viral and certain bacterial infections can be essential for survival. In this report we examined the activation, cell cycle time and initial proliferative response of naïve murine CD8+ T cells responding in vivo to Influenza and Vaccinia virus infection or vaccination with viral antigens. Remarkably, we observed that CD8+ T cells could divide and proliferate with an initial cell division time of as short as 2 hours. The initial cell cycle time of responding CD8+ T cells is not fixed but is controlled by the antigenic stimulus provided by the APC in vivo. Initial cell cycle time influences the rate of T cell expansion and the numbers of effector T cells subsequently accumulating at the site of infection. The T cell cycle time varies with duration of the G1 phase of the cell cycle. The duration of G1 is inversely correlated with the phosphorylation state of the retinoblastoma (Rb) protein in the responding T cells. The implication of these findings for the development of adaptive immune responses and the regulation of cell cycle in higher eukaryotic cells is discussed

    Pathogenicity of in-vivo generated intestinal Th17 lymphocytes is IFNγ dependent

    Get PDF
    Th17 cells are crucially involved in the immunopathogenesis of inflammatory bowel diseases in humans. Nevertheless, pharmacological blockade of IL17A, the Th17 signature cytokine, yielded negative results in patients with Crohn's disease (CD), and attempts to elucidate the determinants of Th17 cells pathogenicity in the gut have so far proved unsuccessful. Here, we aimed to identify and functionally validate the pathogenic determinants of intestinal IL-17-producing T cells

    Phenotypic and Functional Characterization of Human Memory T Cell Responses to Burkholderia pseudomallei

    Get PDF
    The Gram-negative bacterium, Burkholderia pseudomallei, is a public health problem in southeast Asia and northern Australia and a Centers for Disease Control and Prevention listed Category B potential bioterrorism agent. It is the causative agent of melioidosis, and clinical manifestations vary from acute sepsis to chronic localized and latent infection, which can reactivate decades later. B. pseudomallei is the major cause of community-acquired pneumonia and septicemia in northeast Thailand. In spite of the medical importance of B. pseudomallei, little is known about the mechanisms of pathogenicity and the immunological pathways of host defense. There is no available vaccine, and the mortality rate in acute cases can exceed 40% with 10–15% of survivors relapsing or being reinfected despite prolonged and complete treatments. In this article, we describe cell-mediated immune responses to B. pseudomallei in humans living in northeast Thailand and demonstrate clear evidence of T cell priming in healthy seropositive individuals and patients who recovered from melioidosis. This is the most detailed study yet performed on the cell types that produce interferon-gamma to B. pseudomallei in humans and the antigens that they recognize and the first to study large sample numbers in the primary endemic focus of melioidosis in the world
    corecore