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ABSTRACT  

Background and aims. Th17 cells are crucially involved in the immunopathogenesis of 

inflammatory bowel diseases in humans. Nevertheless, pharmacological blockade of 

IL17A, the Th17 signature cytokine, yielded negative results in patients with Crohn’s 

disease (CD), and attempts to elucidate the determinants of Th17 cells pathogenicity in 

the gut have so far proved unsuccessful. Here, we aimed to identify and functionally 

validate the pathogenic determinants of intestinal IL-17-producing T cells. 

Methods In-vivo generated murine intestinal IL-17-producing T cells were adoptively 

transferred into immunodeficient Rag1-/- recipients to test their pathogenicity. Human IL-

17-, IFNγ/ IL-17 and IFNγ- actively secreting T cell clones were generated from lamina 

propria lymphocytes of CD patients. The pathogenic activity of intestinal IL-17-producing 

T cells against the intestinal epithelium was evaluated. 

Results. IL-17-producing cells with variable colitogenic activity can be generated in-vivo 

by different experimental colitis models. Pathogenicity of IL-17-secreting cells was 

directly dependent on their IFNγ secretion capacity, as demonstrated by the reduced 

colitogenic activity of IL-17-secreting cells isolated from IFNγ-/- mice. Moreover, IFNγ 

production is a distinguished attribute of CD-derived lamina propria Th17 cells. IFNγ 

secretion by CD-derived IL-17-producting intestinal clones is directly implicated in the 

epithelial barrier disruption through the modulation of tight junction proteins.  

Conclusions. Intestinal Th17 cell pathogenicity is associated to IFNγ production, which 

directly affects intestinal permeability through the disruption of epithelial tight junctions. 
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INTRODUCTION 

Crohn's disease (CD) and ulcerative colitis (UC), known as inflammatory bowel diseases 

(IBD), are chronic inflammatory disorders of the digestive tract [1]. Current theories 

suggest that IBD onset is secondary to an exaggerated reaction of gut-associated 

lymphoid tissue against the intestinal flora [2, 3] and that T helper (Th) cells, including 

Th17 cells, play a major role in orchestrating the inflammatory response [4].  

IBD patients manifest increased amounts of intestinal Th17 cells [5], and a genome 

wide-association study identified genetic variants in the IL23R gene, encoding for the 

receptor of the Th-17 promoting cytokine IL-23, as independent protective factors for CD 

[6]. Nonetheless, a clinical trial aimed at blocking IL-17A in patients with luminal CD 

showed negative results [7]. The recent understanding that Th17 cells can be divided 

into at least two different subsets on the basis of cytokine profile and pathogenicity, 

probably explains these apparently conflicting results. Classical Th17 cells, induced in 

the presence of TGF1 and IL-6, have been found to display regulatory activities, owing 

to the co-production of IL-17 and IL-10 [8]. Alternative Th17 cells are instead 

characterized by the co-secretion of IL-17 and inflammatory cytokines, including IFNγ 

and GM-CSF, and can mediate pathogenic activities in experimental models of 

inflammation [9]. Several studies have corroborated the existence of a functional 

plasticity of Th17 cells towards the Th1 lineage, both in murine models and in human 

autoimmune diseases, including IBD [10]. The functional transition of T cells from 

classical Th17 to alternative Th1/17 lineage is mostly owed to T cell activation in the 

presence of interleukin-12 and interleukin-23, produced by antigen-presenting cells in 

response to bacteria-derived signals, and involved in the initiation of the Th1 

transcriptional program [11].  

At present, the factors associated with the pathogenicity of in-vivo-differentiated Th17 
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cells in the gut are yet to be fully elucidated. In this context, it has been suggested that 

IFN produced by in-vitro-differentiated Th17 cells might exert a pathogenic role in a 

murine model of intestinal inflammation [12]. On the other hand, recent evidence 

demonstrates that intestinal IL-17 expression acts in an IL-23-independent manner to 

maintain epithelial permeability through the regulation of tight junction expression [13, 

14]. The inflammatory potential of Th17 cells in the gut has so far been studied either 

with in-vitro polarized cells [12], not fully recapitulating in-vivo-occurring Th17 cells from 

a functional standpoint [8, 15-17] or gut-derived Th17 cells induced in vivo by anti-CD3 

antibody administration [18]. The relevant co-production of IL-10 by anti-CD3-induced 

intestinal Th17 cells [19], together with their reduced IFNexpression, can however 

suggest that this model is not optimal to study Th17 pathogenic factors in vivo. 

Additionally, although the detrimental role of recombinant IFNon epithelial cell 

permeability has been established in in vitro models [20], how IFN acts in conferring 

colitogenic activity to in-vivo-differentiated cells in the gut is currently unknown.  

In the present study, we adopted a translational approach aimed at elucidating the 

pathogenic factors of in-vivo-generated intestinal Th17 cells in experimental intestinal 

inflammation and human Th17 cells isolated from the intestinal mucosa of ileal Crohn’s 

disease patients.  

 

Matherial and Methods 

Human Subjects. Peripheral blood and intestinal specimens were obtained from 27 

patients with ileal or ileo-colonic Crohn’s disease (CD) and 23 non-IBD controls (HD) at 

the IRCCS Ospedale Maggiore Policlinico (Milan, Italy).  All the patients were 

categorized according to the Montreal classification. The clinical characteristics and 
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concomitant therapies of CD and HD patients are summarized in Table 1. The 

Institutional Review Board approved the study (permission ref. no. EA1/107/10) and 

informed consent was obtained from the patients. The study was performed in 

accordance with Declaration of Helsinki protocols. 

 

Mice. C57Bl/6 mice were purchased from Charles River Laboratories. IL-17A-eGFP 

(Singer), IFN-/- and Rag1-/- mice were purchased from Jackson Laboratories. IL-

17AeGFPx IFN-/- and IL-17AeGFPx IFN+/+ mice were generated at the IEO animal facility. 

Experimental mice (age and sex matched littermates, 8-10 weeks of age) were housed 

at the IEO animal facility in SPF conditions. Animal procedures were approved by Italy’s 

Ministry of Health (Authorizations no. 27/13, 127/15, 913/16). 

 

Murine and human cells isolation. Murine lamina propria mononuclear cells (LPMC) 

were isolated from colons and small intestines as in [18]. Mesenteric LN and spleens 

were smashed into 70-μm nylon strainers (BD) and eritrocytes lysed with RBC Lysis 

buffer (BD).  Human LPMC were isolated as in [51].  

 

In-vivo induction of murine Th17 cells. In the anti-CD3-induced colitis [18], intestinal 

Th17 cells were generated by injecting mice intraperitoneally (i.p.) with anti-CD3 

antibodies (15 μg, clone 145-2C11) twice every other day. Mice were sacrified 4 hours 

after the last injection.  

In the adoptive transfer model [21], splenic CD4+ T cells were enriched by magnetic 

separation (CD4 murine MicroBeads, clone L3T4, Miltenyi). CD4+ T cells were sorted as 
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Lin-CD3+CD4+CD62L+CD25- in a FACSAria cell sorter (BD) and 2.5x105 cells were 

injected i.p. in Rag1-/- mice. Donor splenocytes were isolated from IL-17AeGFP/+, IL-17A 

eGFP/+
xIFN-/- or IL-17A EGFP/+

xIFN+/+ mice. 

 

Th17 in-vivo pathogenicity test by repetitive adoptive T cell transfer. The 

pathogenicity of in-vivo-generated murine Th17 cells was evaluated by repetitive 

adoptive transfers in Rag1-/- mice of IL-17A eGFP positive cells generated either by 

aCD3 injection (aCD3) or by adoptive transfer of splenic naïve T cells (AT1). 

CD4+ IL-17A eGFP positive T cells (Lin-CD3+CD4+IL-17A eGFP+CD25-) generated in 

the aCD3 model were sorted on a FACSAria from the small intestines of injected mice, 

while those generated from the AT1 model were sorted from colons and mesenteric 

lymph nodes. 2.5X105 sorted cells were injected i.p. in a second Rag1-/- recipient (AT2). 

The gating strategy is illustrated in Supplementary Figure 1.  

AT1, aCD3AT1 and AT2 mice were sacrificed 3 weeks following the adoptive transfer 

and the immune cell infiltrate as well as the histologic score were  assessed. Small 

intestines and colons were removed and portioned to be fixed in 10% formalin or PLP 

buffer for histological analysis and immunofluorescence, snap-frozen for RNA extraction 

and processed for lamina propria mononuclear cells (LPMC) immuno-phenotyping. 

Before portioning, colon length was measured.  

 

Histological analysis. For histological analysis tissue processing was performed with a 

LEICA PELORIS processor before paraffin embedding. Murine samples were embedded 

using an automated system (SAKURA Tissue-Tek). After hematoxylin and eosin 
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staining, snapshots of histology were taken using an Aperio CS2 microscope with a 

scanning resolution of 50,000 pixels per inch (0.5 µm per pixel with a 10x zoom and 2.5 

µm per pixel when scanning at 4x). The scoring of disease activity was performed 

according to the criteria described in Supplementary Table 6.  

 

Human intestinal T cell lines and clones generation. Human Th1, Th1/17 and Th17 

clones were generated via cloning by limiting dilution according to the protocol described 

in [22] from sorted IL-17-IFN+, IL-17+IFN+ or IL-17+IFN- CD4+CD8-CD25- T cells. 

For the isolation of cytokine-producing lymphocytes, freshly isolated total LPMC were in-

vitro stimulated for 3 hours with PMA/Ionomycin (1 µg/ml), and CD4+ IL-17-IFN+ (Th1), 

IL-17+IFN+ (Th1-17) or IL-17+IFN- (Th17) cells were sorted by flow cytometry with IL-

17A and IFN Secretion assays (Miltenyi). 

Th1, Th1-17 and Th17 cells were cloned by limiting dilution and re-stimulated with 

irradiated feeder cells, PHA (1 µg/ml, Sigma) and hIL-2 (100 U/ml, Proleukin) every 21 

days.  

 

Flow cytometry. Murine and human cells were stained with combinations of directly 

conjugated antibodies as specified in Supplementary Table 1C, all sourced from BD, 

eBioscience or Biolegend. The gating strategy to identify murine T cells included the 

exclusion of CD11b+, CD19+ and CD11c+ cells (defined as “lineage”).  

The proliferation of colonic T cells was assessed by Ki-67 staining (Biolegend) according 

to the manufacturer’s protocol. The apoptosis of epithelial cells was assessed by 

Annexin V staining (Biolegend).   
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Intracellular cytokines were detected after stimulation of murine and human cells for 3 

hours with 0.1μM PMA and 1μg/ml Ionomycin (Sigma-Aldrich). 10μg/ml Brefeldin A 

(Sigma) was added for the last hour of stimulation. Cells were fixed and permeabilized 

with Cytofix/Cytoperm (BD) before the addition of the antibodies detecting the cytokine 

released. 

Multiplexing analysis of cytokines in supernatants collected after T cell clones stimulation 

with PMA/Ionomycin was performed with a CBA assay, according to manufacturer’s 

protocol (BD).  

Samples were analyzed by a FACSCanto flow cytometer (BD), gated to exclude non-

viable cells on the basis of light scatter. Data were analyzed using FlowJo software 

(Tristar). 

 

Immunofluorescence. Intestinal samples were fixed overnight in paraformaldehyde 

(PFA), L-Lysine pH 7.4 and NaIO4 (PLP buffer). They were then washed, dehydrated in 

20% sucrose for at least 4 hours and included in OCT (Sakura). 10μm-thick sections 

were re-hydrated with a 0.1M Tris HCl ph7.4 buffer and blocked with 0.3% Triton X-100, 

2% FBS 0.1M Tris-HCl buffer. For ZO-1 staining, the slides were incubated with the 

primary antibody (anti-ZO-1 FITC, 1:100) for 2 hours. For CCL20 staining the slides 

were incubated with the primary antibody (anti CCL20, 1:100) overnight and then with 

AF647 secondary antibody for 2 hours. Nuclei were counter-stained with DAPI 

(1:30.000; Roche) and mounted with Vectashield (Vector Laboratories). 

Lab-Tek culture chamber slides (Sigma) with monolayers of Caco-2 cells were fixed with 

4% PFA before blocking with 2% FBS-containing Tris-HCl buffer and staining of 

fluorocrome-conjugated anti-ZO-1 antibodies (1:100). The slides were mounted with a 
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fluorescent mounting medium (Dako Cytomation) and analyzed by using an inverted 

confocal laser scanning microscope (Leica). Digital images were taken and processed 

using Fiji software.  

 

RNA isolation, cDNA synthesis, quantitative PCR and gene expression. Total RNA 

was extracted from mouse intestinal tissues using TRIZOL and Quick-RNA MiniPrep 

(Zymo Research) according to the manufacturer’s instructions, and from Caco-2 cells 

using RNeasy Micro Plus kit, Qiagen. cDNAs were retro-transcribed with EasyScript 

Plus Reverse Transcriptase kit (abm Inc.) and amplified with in-vitro DNA Amplification 

Kit (abm Inc.). Gene expression levels were evaluated by qPCR using SYBR Green 

Master Mix (Applied Biosystems) and normalized to murine Rpl32 or human GAPDH 

gene expression. Primer sequences used for qPCR analysis are available in 

Supplementary Table 1a. An heat map was generated on the average of the 

standardized expression value (Z-score) of selected genes by Expression Heatmaps 

function on Heatmapper server (http: http://www1.heatmapper.ca/).  

For global gene expression profiling analysis, total RNA samples from healthy control 

and Crohn’s disease patients were processed according to the manufacturer’s protocol, 

by using GeneChip Human Gene 1.0 ST array (Affymetrix, Santa Clara, CA). The raw 

intensity expression values were processed by Robust Multi-array Average procedure 

[49] , with the re-annotated Chip Definition Files from BrainArray libraries version 20.0.0 

[50], available at http://brainarray.mbni.med.umich.edu. In order to find the differentially 

expressed genes between Crohn’s disease patients and control samples, global gene 

expression analysis was perfomed on two separate datasets. The ratio of the difference 

between the expression levels of the two experiments on the mean value of the same 
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two variables was computed. Those genes exceeding the mean plus 3 standard 

deviations of all the ratio values were selected as the most significantly differentially 

expressed between the two conditions. Functional annotation clustering was performed 

on Gene Ontology (GO) terms using the default conditions, by means of the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) Tool 6.8 

(https://david.ncifcrf.gov/). Annotation clusters with an Enrichment Score (ES) >1.3 were 

chosen and representative GO terms were reported for each significant cluster.  

 

In-vivo intestinal permeability measurement. The permeability of the intestinal 

epithelial/endothelial barrier in vivo was measured by analysis of the LPS concentration 

in the blood serum of mice with LAL Chromogenic Endotoxin Quantitation Kit (Pierce, 

Thermo Fisher) according to manufacturer’s protocol. 

  

Measurement of trans-epithelial electrical resistance (TEER). The Caco-2 cells were 

sourced from the American Type Culture Collection (ATCC) and cultured in DMEM 

supplemented with 20% FCS, 2MM L-glutamine, 1mM sodium pyruvate, 0.1 mM non-

essential amino acids (NEAA) and penicillin/streptomycin.  The cells were split three 

times a week. For TEER measurement the cells at passage 10-30 were plated at 15x103 

cells/well on polyester permeable Transwell-clear inserts (6.5-mm diameter, 0.4-mm 

pore size, Corning®) and grown for 5‒7 days, until ΔTEER >300 Ω*cm2 (Millicell-ERS 

Volt-Ohm Meter Millipore, Bedford, MA). 

The supernatants collected from intestinal CD4+ T cell clones, stimulated for 3 hours 

with PMA/ionomycin in Caco-2 medium, in the presence or absence of neutralizing Ab 

(anti- human -IFNγ, -IL-17A, -TNF, eBioscience 10 μg/ml, 20 μg/ml for anti-IFNγ) were 
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applied in the lower transwell chamber. Human recombinant cytokines (rIL-1β, and 

rTNF, 10μg/ml, Miltenyi) were used as positive controls.  

Measurements were carried out every 30 minutes in the first 2 hours, then at 24 and 48 

hours after stimulation. The ohmic resistance of a blank (culture insert without cells) was 

measured in parallel. To obtain the sample resistance, the blank value was subtracted 

from the total resistance of the sample. The final unit area resistance (Ω*cm2) was 

calculated by multiplying the sample resistance by the effective area of the membrane. 

For comparison among treatments with different clones, TEER was normalized to the 

supernatant of each unstimulated clone.  

 

Tight junction expression on intestinal cell monolayers. Caco-2 cells were seeded 

on 8-well Lab-Tek culture slides (Sigma), at a density of 104 cells/well in complete 

DMEM medium. Once 90% confluence was reached, the medium was replaced by 400 

ul of supernatant derived from stimulated human T-cell clones; as negative controls, the 

medium alone or the supernatant of unstimulated clones were used. rIL-1b and rTNF (10 

ug/ml, Miltenyi) were used as positive controls. Caco-2 cells were stimulated for 16 

hours and then fixed and the tight junction expression was evaluated by IF microscopy 

(Zonulin-1) or by qPCR analysis. 

 

Statistics. Statistical significance was calculated by a two-tailed unpaired Mann-Whitney 

test without assuming a Gaussian distribution. P <0.05 (*), P <0.01 (**) P <0.001 (***) 

were regarded as statistically significant. Outliers were detected with Grubb’s test. 
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RESULTS 

Intestinal IL-17-producing cells with different colitogenic potential can be 

generated in vivo. 

Intestinal Th17 cells were generated in vivo through different experimental protocols (Fig 

1A, 1B) and IL-17-producing cells were tracked by the use of IL-17eGFP/+ reporter mice 

[19]. The intraperitoneal injection of the anti-CD3 antibody 2C11 into IL-17eGFP/+ mice 

(aCD3, Fig. 1A, left panel) induced the differentiation of intestinal Th17 cells co-

producing IL-10 and IL-22, but not IFN (Fig. 1C). On the contrary, the adoptive transfer 

of naïve T cells into Rag1-/- recipients [21] (AT1, Fig. 1B, left panel) induced Th17 cells 

that were co-secreting IFN but very little IL-10 and IL-22 (Fig. 1C, D and Supplementary 

Figure 2A). 

The colitogenic potential of intestinal Th17 cells differentiated in-vivo by these two 

protocols was evaluated by adoptive transfer of the sorted intestinal IL-17eGFP cells from 

aCD3 or AT1 mice into a second immunodeficient Rag1-/-  host (aCD3-AT2, Fig. 1A; and 

AT2, Fig. 1B right panels). Intestinal IL-17eGFP cells originated from aCD3 or AT1 mice 

expressed similar levels of CD69 and 47, confirming similar activation status and 

intestine-homing ability (not shown). Three weeks after the adoptive transfer of IL-17-

producing cells, the histological examination of aCD3-AT2 mice highlighted a milder 

intestinal inflammation as compared to AT2 mice (Fig.  1E‒1F) and a lower colonic 

expression of Th1-associated genes including cxcr3 (Fig. 1G) and tnf (Fig. 1H). 

Noteworthy, the AT2 mice expressed increased colonic levels of ccl20, a chemokine 

promoting CCR6+Th17 cells recruitment in the mucosa [19]  (Fig. 1G). 

Colonic CD4+ T cells isolated from AT2 mice held a sustained IFN-secreting capacity 

(Fig. 1I,J and Supplementary Figure 2B), an activated CD69+ phenotype, and expressed 
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high levels of the gut-homing integrin 47 (Fig. 1K) three weeks post transfer. On the 

contrary, CD4+ T cells isolated from aCD3-AT2 mice secreted more IL-10 in both the 

colon and mLN and expressed lower levels of CD69 and 47 (Fig. 1I-K). To note, 

colonic IL-17+ cells of AT2 mice were also robustly proliferating, as indicated by the Ki-

67 expression (Fig. 1L) and the increased absolute numbers (data not shown). 

Taken together, these data support the possibility to induce in-vivo intestinal Th17 cells 

exhibiting different pathogenic potentials associated with a skewed cytokine co-

expression profile.   

 

IFN confers pathogenic activity to intestinal IL-17-producing T cells. 

To evaluate if IFN produced by in-vivo generated intestinal IL-17+ cells  contributed to 

their colitogenic activity, we firstly crossed IL-17AeGFP mice with IFN -/- mice (Suppl. Fig. 

3). Next, IFN-sufficient or -deficient Th17 cells were generated in vivo by adoptively 

transferring naïve T cells isolated from IL-17eGFPIFN
+/+ or IL-17eGFPIFN

-/- mice (AT1, 

Fig. 2A, left panel). Of note, IFN-sufficient or -deficient Th17 cells were characterized by 

a similar phenotype (supplementary Figure 4A). Finally, the pathogenicity of IFN-

sufficient or deficient Th17 cells was tested by transferring colonic IL-17eGFP positive cells 

into a second immunodeficient host (IFN
+/+AT2 and IFN

-/-AT2, Fig. 2A right panel).  

The transfer of in-vivo-differentiated colonic IFN-deficient-Th17 cells induced a milder 

form of colitis than that induced by IFN-sufficient-Th17 cells, as shown by histological 

evaluation (Fig. 2B) and colon length measurement (Fig. 2C).  Colonic CD4+ T cells 

isolated from IFN
-/-AT2 mice showed a reduced proliferative capacity (Supplementary 

figure 4B) and a skew towards IL-10 production, to suggest a negative control of IFN 

over IL-10 production in Th17 cells (Fig. 2D). The latter phenomenon may also 
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contribute to the reduction of T- cell-derived IL-17 and IL22 in  IFN
-/-AT2 mice, 

confirming a suppressive role of IL-10 over Th17 cytokine production [22]. 

The transfer of pathogenic IFN-sufficient Th17 cells led to a significant increase in the 

colonic expression of ccl20, at RNA (Fig. 2E) and protein level (Fig. 2F), which was not 

observed in recipients of IFN-deficient-Th17 cells, No significant differences between 

the recipients of IFN-deficient or -sufficient Th17 cells were observed with regard to the 

colonic expression of other chemokines or inflammatory genes (Fig. 2F) with the notable 

exception of tnf , which was reduced, albeit not significantly, in IFN
-/AT2 mice (Fig. 2G).  

In order to assess whether Th17-derived IFN exerted any influence over intestinal 

permeability, the circulating levels of lipopolysaccharide (LPS), a marker of bacterial 

translocation and an indirect marker of epithelial barrier integrity [23], were measured in 

recipients of intestinal Th17 cells. Reduced LPS levels were found in mice receiving 

IFN-deficient with respect to IFN-sufficient Th17 cells (Fig. 2H). This was associated 

with enhanced protein levels of the intestinal tight junction protein zo-1 in the intestinal 

epithelium (Fig. 2I). 

Taken together, these results suggest that IFN contributes to the pathogenic activity of 

in-vivo-generated intestinal Th17 cells by exerting a direct effect over the epithelial 

barrier, and by inhibiting IL-10 intestinal expression.    

Characterization of IL-17-producing cells from CD patients. 

We next evaluated whether the functional phenotype of murine intestinal pathogenic 

Th17 cells would be retained in human Crohn’s disease. The cytokine profile of the 

lamina propria CD4+ Th cells of CD patients and uninflamed controls (i.e, patients 

undergoing intestinal resections for cancer or IBD-unrelated pathologies) (Table 1) was 

analyzed ex vivo by cytofluorimetry (Fig. 3A‒3D and Suppl. Fig. 5A). To minimize 
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biological variability, the analysis was exclusively focused on surgical terminal ileal 

specimens. As previously reported [10], a significant co-expression of IFN and TNF was 

observed in the IL-17-producing cells isolated from the CD patients, but not from the 

uninflamed controls (Fig. 3A and 3C). In contrast, almost no IL-17+IL10+ CD4+ cells were 

found in CD and HD LPMC (Fig. 3B and 3D), while an increased proportion, albeit not 

statistically significant, of IL-17+IL22+ was observed in CD mucosa.  

Next, we evaluated if a gene expression signature for CD-derived lamina propria Th17 

cells existed. Actively IL-17-secreting ileal CD4+ Th cells were ex-vivo sorted from CD 

and HD LPMC (Fig. 3E and Suppl. Fig. 5B). As expected, only IL-17+ CD4+ sorted Th 

cells, but not IL-17- cells, expressed the gene transcript for IL-17 (Fig. 3F). Of note, the 

expression of the gene encoding for ifng was strongly associated to CD-derived IL-17+ 

CD4+ T cells (Fig. 3G), while the gene encoding for TNF was mostly associated to IL-17- 

T cells. Next, a global transcriptional profiling of the sorted lamina propria IL-17-

producing CD4+ T cells from CD and healthy mucosa was performed by microarray 

analysis on ultra-high quality RNA (Fig. 3H‒3J). Functional annotation clustering was 

performed on the 211 differentially expressed genes (149 upregulated, 62 

downregulated) in CD-derived IL-17+ cells as compared to those from healthy mucosa. A 

significant enrichment in specific functional categories, such as responses to microbial 

stimuli, activation, co-stimulation and cytokine-mediated T cell signaling was evidenced 

(Fig. 3I).  Fold changes in expression levels between CD and healthy samples were 

depicted for genes involved in transcription regulation, acting as cell surface molecules 

or chemokines and cytokines (Fig. 3J). Interestingly, Th17 from uninflamed ileum 

expressed increased levels of IL-9, which is a cytokine associated with ‘classical’ Th17 

cell gene signature [9, 24].  

Taken together, these data indicate that IL-17-secreting CD4+ T cells from CD patients 
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express distinct cytokine and molecular profiles and confirm that IFN might be a 

distinguished attribute for human CD-derived Th17 cells [10]. 

 

Intestinal Th1-17 clones exert distinctive effects on epithelial cells. 

We next investigated whether human Th17 cells isolated from the intestinal mucosa of 

active CD patients conveyed similar IFN-mediated pathogenic effects towards the 

intestinal epithelium integrity. To this end, CD4+ T cells were isolated from LPMC in 6 

active treatment-naïve ileal CD patients. By taking advantage of a double IFN/IL-17-

secretion assay (Fig. 4A), lamina propria IL-17-, IFN- or both IL-17/IFN - actively 

secreting CD4+T cells were ex vivo sorted and subsequently cloned by limiting dilution 

[25] in order to generate respectively Th17, Th1 and Th1-17 stable clones (Fig. 4B, 4C). 

To note, the total number of clones that could be generated from each patient was 

variable and partly reflected the inflammatory status of the mucosa and the disease 

course (Fig. 4B). To prevent possible artifacts linked to Th17 cones plasticity [26], the 

cytokine profile of Th1, Th1-17 and Th17 CD4+ T cell clones was re-evaluated by flow 

cytometry before each functional assay. In addition, functional assays were performed 

with at least 3 to 5 independent clones for each subset.  

Soluble mediators, including cytokines, produced by the immune cells during intestinal 

inflammation can directly act on the mucosal epithelial barrier [27]. To evaluate the 

contribution of Th cell-derived soluble factors to the intestinal epithelial damage, the 

supernatants of polyclonally activated CD-derived Th clones were applied on Caco-2 

colon epithelial monolayers. Multiplexing analysis demonstrated a higher amount of 

IFN, TNF and GM-CSF in Th1 and Th1/17-derived supernatants, which were not 

detected in Th17-derived supernatants (Fig. 4D). The supernatants of activated Th1 or 
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Th1-17 clones, but not of Th17 clones, affected the integrity of the epithelial layer, as 

documented by a significant reduction of the transepithelial electrical resistance (TEER, 

Fig. 4E). The pathogenic effects of Th1 and Th1-17-derived supernatants were 

associated with the disruption of the monolayer architecture, as shown by tight junction 

protein ZO-1 immunofluorescence staining (Fig. 4F). Annexin V staining and early 

apoptotic gene expression analysis in epithelial cells excluded any contribution of T cell-

mediated apoptosis in modulating epithelial cell permeability (Suppl. Fig.6). Importantly, 

ccl20 mRNA induction in Caco-2 cells was exclusively observed following stimulation by 

Th1/17 supernatants (Fig. 4G). 

These data confirm that IL-17-producing cells isolated from CD patients contain an 

elevated proportion of Th1/17 cells that exhibit pathogenic activity against  the integrity 

of the intestinal epithelial barrier. 

IFN produced by Th1-17 clones is responsible for pathogenicity against intestinal 

epithelial cells.  

To link the IFN produced by Th17 cells to the observed effects on epithelial cells 

permeability, supernatants of polyclonally stimulated human Th1, Th1-17 and Th17 

clones were applied in vitro to Caco-2 monolayers in the presence of IFN neutralization 

(Fig. 5A). TEER measurement (Fig. 5A) demonstrated that IFN neutralization 

suppressed the effect of the Th1 and Th1-17 clone supernatants, but not that of pure 

Th17 clones, over epithelial permeability. Additionally, IFN neutralization partially 

restored the RNA expression levels of several junctional proteins (Fig. 5B), More 

importantly, it prevented architectural disruption in Caco-2 monolayers exposed to Th1-

17 clones supernatants (Fig. 5C). 
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In conclusion, these data confirm that IFNγ secreted by IL-17-producing T cells during 

intestinal inflammation has a direct pathogenic effect on the intestinal epithelium and its 

blockade reduces intestinal permeability by modulating tight junction expression.  

DISCUSSION 

The negative outcomes of IL-17A neutralization in CD patients [7] led to a progressive 

reconsideration of the role of Th17 cells and Th17-derived cytokines in the modulation of 

intestinal inflammation and in IBD pathogenesis. The results from the present study 

demonstrate that in-vivo-generated intestinal Th17 cells exert a pathogenic activity in the 

gut, which is linked to their transition towards Th1/17 cells, and is mostly mediated by 

IFN activity towards the epithelial barrier.  

The plasticity of mature Th17 lymphocytes towards IFN-production in response to 

inflammatory milieu is an established concept. IL-23 signalling, in particular, is a key 

factor mediating Th17 to Th1 transition. Similarly, the in-vitro exposure of Th17 

precursors to IL-23 results in the progressive extinction of IL-17A and emergence of 

IFN-producing cells [24]. Th17-Th1 transition has been also causally related to the 

emergence of intestinal inflammation, as the transfer of in-vitro-generated Th17 cells 

gives rise to IFN-producing cells in the gut, and induces colitis that is partially reversed 

by IL-23 neutralization [24, 28]. Gut-derived Th1, Th17 and Th1/17 cells exert a similar 

colitogenic activity, upon the switch towards Th1-like cells and IFNproduction [29].  

In our study, Th17 cells, differentiated in vivo in two distinct colitis models, induced some 

degree of intestinal inflammation. Nevertheless, the transfer of intestinal IL-17+ cells, 

harvested from the adoptive transfer model, induced a higher colitis score, which was 

associated with a two-fold increase in T-cell IFN secretion. On the contrary, aCD3-

derived Th17 cells showed persistent IL-10 secretion, thus confirming the previously 
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reported ineffectiveness of IL-17+IL-10+ cells in sustaining pathological inflammation [8]. 

As Th17 cells express a functional IL-10 receptor [18], one can speculate that Th17-

derived IL-10 potentially contributes to the restraining of Th17-mediated inflammation in 

the colon. Moreover, IL-10 neutralization was required for the efficient transition of Th17 

cells towards IFN
+ production in a T cell transfer colitis model [29].   

The determinants of Th17-to-Th1 transition in the gut are still to be clarified, but current 

evidence suggests that intestinal flora possibly plays a relevant role [11]. Morrison et al. 

have demonstrated that Helicobacter hepaticus infection induces intestinal Th17 cells 

that progressively extinguish IL-17A secretion and turn IFN on [29]. CD-derived LPMCs 

secrete IFNfollowing their exposure to commensal bacteria, in a process partly 

mediated by IL-23 production from intestinal antigen-presenting cells [30, 31]. Finally, 

gut-derived Th17 cells are characterized by a T-cell antigen receptor (TCR) repertoire, 

which is partly skewed towards the recognition of Segmented Filamentous Bacteria 

(SFB) and contributes to their pathogenic functions [32]. 

A strong association between T cell-derived IFN and experimental intestinal 

inflammation has been long known. IFN neutralization inhibits colitis development in a 

CD45RBhi T cell transfer model [21]. Similarly, T cells derived from IFN- [33] Tbet- [34] 

or STAT4- [35] deficient mice fail to induce intestinal inflammation upon transfer. 

Recently, IFN production by in-vitro-differentiated Th17 cells has shown to contribute to 

their pathogenic activity [12]. However, in-vitro-differentiated Th17 cells do not fully 

recapitulate those arising in vivo under homeostatic or inflammatory conditions [12], [8, 

15‒17].  

Live murine cytokine-secreting cells can be easily tracked thanks to the availability of 

different reporter mice. To isolate live IL-17 and IFN-secreting cells from human 
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specimens, instead, we took advantage of a cytokine secretion assay coupled with cell 

sorting, followed either by RNA extraction or by single cell cloning. To our knowledge, 

this is the first time that this technique has been  applied to the functional study of 

human intestinal T cells. This approach has proved to be technically challenging, given 

the reduced number of cells isolated from human intestinal specimens, their intrinsic 

fragility, and the complex steps required from isolation, stimulation, sorting and cloning. 

Nonetheless, this technique has proved successful and allowed us to perform functional 

assays, and gene expression profiles, with unmanipulated CD-derived pathogenic CD4+ 

human intestinal T cell subsets (Th17, Th1/17 and Th1), defined by their cytokine profile 

rather than by surface markers expression [36-38].  

Increased epithelial barrier permeability and bacterial translocation are considered 

crucial events in IBD development [3] and mucosal T cells have shown to contribute in 

multiple ways [39]. Intestinal epithelial cells express  IFNR [40] and recombinant IFN 

applied to intestinal epithelial cell lines decreases their transepithelial resistence [41], an 

effect that is prevented by an anti-IFNR antibody [42]. Here, we observed that pro-

inflammatory cytokines secreted by Th1 and Th1/17-intestinal clones from IBD patients 

are directly responsible for the increase in epithelial barrier permeability. Th1 and 

Th1/17-derived IFN increased epithelial cell permeability by acting on the junctional 

proteins, particularly zonulin-1 (ZO-1): this confirms previous data obtained with 

recombinant IFN. Although IFN can induce apoptosis in many cell lines, alone or 

with IL-1b and TNF [44], we could not observe IFN-induced apoptosis in epithelial cells. 

However, a direct association between IFN-dependent apoptosis and increased 

epithelial permeability has not been reported [41, 42].  

The evidence that we have provided in this work, strongly suggests the direct 

Downloaded from https://academic.oup.com/ecco-jcc/advance-article-abstract/doi/10.1093/ecco-jcc/jjy051/4985327
by Univerità degli Studi di Milano user
on 07 May 2018



Acc
ep

te
d 

M
an

us
cr

ipt

Manuscript Doi: 10.1093/ecco-jcc/jjy051 

 

contribution of IFN as produced by Th17 cells in sustaining an inflammatory loop in IBD 

patients, which originates from an increase in EC permeability and possibly facilitates 

bacterial translocation to the lamina propria. In murine models, repetitive enteric stress 

induction elevates colonic IFN, which increases paracellular permeability and 

commensal bacterial translocation, not observed in IFN-deficient [45] or in anti-IFN 

treated mice [46]. To note, IFN promotes also the intracellular epithelial internalization 

of bacteria [47, 48].  

Thus, our work provides the first direct association between the role of Th17-Th1 

plasticity and Th17 IFN production in sustaining intestinal permeability and in mediating 

the Th17 cells pathogenic functions during experimental intestinal inflammation and 

human CD. These findings potentially lead to novel therapeutic opportunities to be 

aimed at blocking specific Th1-associated functions in Th17 cells, leaving unaltered 

those unrelated to intestinal inflammation that can instead contribute to regulatory 

functions. 
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   Clinical parameter Crohn’s disease n=27 Healthy controls n=23 

   
Male/Female, n 12 / 15 15 / 8 

Age at enrolment, mean ± SD, yr  45.18 (± 11.54) 60.95 (± 15.35) 

Disease duration, mean ± SD, yr  9.46 (± 6.82) - 

Smoking status, yes/no/ex 10/13/4 
 

   
Crohn’s disease location, n* 

  
L1 (ileal) 15 - 

L2 (colonic) 0 - 

L3 (ileocolonic) 12 - 

L4 (upper disease) 0 - 

Crohn’s disease behavior, n* 
  

B1 (non-stricturing, non-penetrating) 6 - 

B2 (stricturing) 16 - 

B3 (penetrating) 5 - 

   
Concomitant therapy at enrolment 

  
Antibiotics, n 1 

 
mesalamine, n 4 - 

thiopurines, n 6 - 

corticosteroids, n 2 - 

    Anti-TNF 4 - 

      

   

   

   

Table 1: Patients description 
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Figure legends 

Figure 1 In-vivo induced murine Th17 cells manifest different colitogenic properties. (A, 

B) Schematic representation of in-vivo induction of murine Th17 cells by aCD3 injection 

(A, aCD3) or by adoptive transfer of CD4+CD25- naïve splenic CD4+ T cells (B, AT1).  

Right-end parts of the schemes in A and B, colitogenicity evaluation of in vivo-generated 

Th17 cells by adoptive transfer of intestinal IL-17eGFP+ T cells into a second Rag1-/- 

recipient (aCD3-AT2 and AT2 transfers). (C, D) Representative dot plots (C) of IL-17A 

and IFN secretion by murine LP CD4+ T cells upon aCD3 injection (upper panels, SI-

derived cells) or upon adoptive transfer of naïve splenic T cells (AT1, lower panels, 

colon-derived cells). Right-end panels, IL-10 and IL-22 secretion by IL-17-producing T 

cells. (D) Frequency of IL17 and IFNg producing CD4+ T cells in the small intestine, 

colon and mesenteric LNs of aCD3 (white bars) and AT1 (black bars) mice. (E,F) 

Histological evaluation (E) and colon length (F) of Rag1-/- mice untransferred (closed 

triangle) or 3 weeks after  adoptive transfer (Open circles, AT1 mice; open triangles, 

aCD3AT2 mice; closed circles, AT2 mice). Scalebar, 100 µm (G,H) Colonic expression 

of (G) mcp-1, il-8, cxcr3, ccl20, cxcl10 and (H) tnf in Rag-/- mice 3 weeks after  adoptive 

transfer of in-vivo induced Th17 cells (from aCD3 injection, white bars; from adoptive 

transfer, black bars). (I,J) Frequency of IL-17, IFN, IL-10 and IL-22 (I) and of IL17/IFNg 

(J) producing CD4+ T cells in colon, small intestine and mesenteric LN of aCD3-AT2 and 

AT2 mice 3 weeks after transfer. (K) CD69 and 47 expression on colonic CD4+ T cells 

isolated from aCD3AT2 (white bars) and AT2 mice (black bars) 3 weeks after transfer. 

(L) Ki-67 expression on colonic CD4+ IL-17eGFP+ T cells isolated from aCD3AT2 and AT2 

mice. aCD3 n=6, AT1 n=15 mice; aCD3-AT2 n=11, AT2 n=14 mice analysed in 8 

independent experiments. Outliers were detected with Grubb’s test. Significance was 
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determined using unpaired two-tailed Mann-Whitney test and expressed as mean±SEM. 

P < 0.05 (*), P < 0.001 (***) were regarded as statistically significant. 

 

Figure 2 Absence of IFN reduces murine Th17 cells colitogenic capacity in vivo. (A) 

Schematic representation of Th17 cells colitogenicity upon the repetitive adoptive 

transfer of IFN-sufficient or -deficient in-vivo-generated IL-17-producing CD4+T cells. (B, 

C) Histological evaluation (B) and colon length (C) of Rag1-/- mice: untransferred (closed 

triangle), adoptively transferred with colonic Th17 cells IFN-sufficient (IFN+/+AT2 open 

circles) or deficient (IFN-/-AT2 mice, closed circles). Scale bar, 100 µm (D) Frequency of 

cytokines (IL-17A, IL-10, IL-22) secreted by colonic CD4+ T cells in IFN+/+AT2 mice, 

open circles, or in IFN-/-AT2 mice, closed circles. (E) Colonic expression of mcp-1, il-8, 

ccl20, cxcl10 in IFN+/+AT2 (white bars) or IFN-/-AT2 (black bars) cells. (F) IF analysis of 

ccl20 expression in colons of  IFN+/+AT2 and IFN-/-AT2. (G) Colonic expression of TNF 

IFN+/+AT2 (white bars) or IFN-/-AT2 (black bars) mice. (H) LPS levels in sera of 

untreated Rag-/- (grey bars), IFN+/+AT2 (white bars) or in IFN-/-AT2 mice (black bars). (I) 

intestinal ZO-1 expression in IFN+/+AT2 (left panel) or IFN-/-AT2 (right panel). IFN+/+ 

n=10, IFN-/- n=9 mice from 3 independent experiments. Outliers were detected with 

Grubb’s test. Significance was determined using unpaired two-tailed Mann-Whitney test 

and expressed as mean±SEM. P < 0.05 (*),were regarded as statistically significant.   

 

Figure 3. Ileal CD4+ T cells of CD patients are enriched in IL-17+IFN+ T cells. 

Representative dot plots (A, B) and cumulative statistical analysis (C, D) of IL-17A, IFN, 

TNF, IL10 and IL22 produced by ileal lamina propria CD4+ T cells isolated from Chron’s 
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disease patients (CD, n=11) and healthy donors (HD, n=9). (E) Representative dot plot 

of IL-17 produced by LP CD4+ T cells derived from HD (upper panel) and CD patients 

(lower panel) after ex-vivo IL-17A secretion assay (F) Expression levels of IL-17a in IL-

17A- (white bars) and IL-17A+ (black bars) ileal CD4+ T cells sorted upon IL-17A 

secretion assay of HD (n=7) and CD (n=13) LPMC. (G) Hierarchical clustering by 

average linkage of Pearson’s distance of Th1-,Th2-,Th17-,Th22- and Treg-associated 

gene expression profile in IL-17- and IL-17+ ileal CD4+ T cells sorted sorted upon IL-17A 

secretion assay of HD (white bars, n=7) and CD (black bars, n=13) LPMC. Colour 

intensity reflects gene expression levels. (H, I) Scatter plot (H) and (I) functional 

annotation clustering analysis of differentially expressed genes between IL-17A+ and IL-

17A- sorted CD4+ T cells from CD and control samples. Significant Annotation clusters 

(ES >1.3) of representative GO terms for the 211 differentially expressed genes (I) and 

(J) the heatmap displaying the fold changes in expression levels of selected gene 

subsets, in Crohn’s versus the  normal sample. * P ≤0.05; ** P ≤0.01  *** P ≤0.001 

Mann-Whitney’s unpaired two-tailed t test. Mean value ± SEM are reported.  

 

Figure 4. Human Th1-Th17 cells are pathogenic towards epithelial cells. (A) 

Representative dot plot of double IL-17A-IFN secretion assay by CD-derived ileal LP 

CD4+ T cells. (B) Frequency (left panel) and total number (right panel) of Th1, Th1-17 

and Th17 ileal CD4+ T cell clones derived from LPMCs of 6 independent treatment-naïve 

CD patients. (C) Representative dot plots of the cytokine profiles of Th1 (left panel), Th1-

17 (middle panel) and Th17 (right panel) clones 2 weeks after cloning. (D) Multiplex 

analysis of IL-10, GM-CSF, TNF, IL-17A and IFN concentrations in the supernatants of 

polyclonally stimulated Th1 (left panels), Th1-17 (middle panels) and Th17 (left panels) 
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clones. (E) Trans-epithelial resistance (TEER) measured upon co-culture of Caco-2 cells 

alone (open circles) or with supernatants of unstimulated (closed circles) or polyclonally 

stimulated (red circles) Th1 (left panel), Th1-17 (middle panel) and Th17 (right panel) 

clones, or with rIL1 and rTNF (grey circles). (F) ZO-1 IF staining of Caco-2 cells 48 

hours after incubation with supernatants of unstimulated (upper rows) or polyclonally 

stimulated (lower rows) Th1 (left panels), Th1-17 (middle panels) and Th17 (right panels) 

clones. Scale bar, 10 µm (G) ccl20 expression by Caco-2 exposed 48 hours to 

supernatants of unstimulated (white bars) or stimulated (grey bars) Th1, Th1-17 and 

Th17 clones, or to rIL1 and rTNF (black bars) * P ≤0.05; *** P ≤0.001 Mann-Whitney’s 

unpaired two-tailed t test. Mean value ± SEM are reported.  

 

Figure 5 Blockade of IFN abolishes human T cell clones pathogenicity in vitro (A) 

Trans-epithelial resistance (TEER) measurement 48 hours after exposure of Caco-2 

cells to supernatants of Th1 (left panel), Th1-17 (middle panel) and Th17 (right panel) 

clones left unstimulated (open circles), polyclonally stimulated (closed circles) or 

polyclonally stimulated in the presence of neutralizing anti-IFN (red circles) antibodies. 

(B) cld2, ocln, f11r and tjp1 expression by Caco-2 exposed for 48 hours to supernatants 

of unstimulated (white bars) or polyclonally stimulated  Th1 and Th1-17 clones in the 

absence (grey bars) or presence (black bars) of neutralizing anti-IFN antibodies. (C)  

ZO-1 IF staining of Caco-2 cells 48 hours after exposure to supernatants of Th1 (left 

panels) and Th1-17 (middle panels) clones left unstimulated (upper rows), polyclonally 

stimulated (middle rows) or polyclonally stimulated in the presence of neutralizing anti-

IFN antibodies (lower rows). * P ≤0.05; *** P ≤0.001 Mann-Whitney’s unpaired two 

tailed t test. Mean value ± SEM are reported. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

  

Downloaded from https://academic.oup.com/ecco-jcc/advance-article-abstract/doi/10.1093/ecco-jcc/jjy051/4985327
by Univerità degli Studi di Milano user
on 07 May 2018



Acc
ep

te
d 

M
an

us
cr

ipt

Manuscript Doi: 10.1093/ecco-jcc/jjy051 

 

Figure 5. 
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