369 research outputs found

    Large Size Telescope camera support structures for the Cherenkov Telescope Array

    Full text link
    The design of the camera support structures for the Cherenkov Telescope Array (CTA) Large Size Telescopes (LSTs) is based on an elliptical arch geometry reinforced along its orthogonal projection by two symmetric sets of stabilizing ropes. The main requirements in terms of minimal camera displacement, minimal weight, minimal shadowing on the telescope mirror, maximal strength of the structures and fast dynamical stabilization have led to the application of Carbon Fibre Plastic Reinforced (CFPR) technologies. This work presents the design, static and dynamic performance of the telescope fulfilling critical specifications for the major scientific objectives of the CTA LST, e.g. Gamma Ray Burst detection.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Status of the Micromegas semi-DHCAL

    Full text link
    The activities towards the fabrication and test of a 1 m3 semi-digital hadronic calorime- ter are reviewed. The prototype sampling planes would consist of 1 m2 Micromegas chambers with 1 cm2 granularity and embedded 2 bits readout suitable for PFA calorime- try at an ILC detector. The design of the 1 m2 chamber is presented first, followed by an overview of the basic performance of small prototypes. The basic units composing the 1 m2 chamber are 32 \times 48 cm2 boards with integrated electronics and a micro-mesh. Results of character- ization tests of such boards are shown. Micromegas as a proportional detector is well suited for semi-digital hadronic calorimetry. In order to quantify the gain in perfor- mance when using one or more thresholds, simulation studies are being carried out, some of which will be reported in this contribution

    Test in a beam of large-area Micromegas chambers for sampling calorimetry

    Full text link
    Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1×\times1 m2^{2} were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility

    Oxygen permeation, thermal and chemical expansion of (La, Sr)(Fe, Ga)O3−ή perovskite membranes

    No full text
    International audienceDense ceramic membranes made from mixed conductors are interesting because of their potential applications formethane conversion into syngas (H2 and CO mixture). Such membranes need to present a low differential dimensional variation between the opposite faces submitted to a large gradient of oxygen partial pressure, in order to minimize mechanical stresses generated through the membrane thickness. Besides, high oxygen permeability is required for high methane reforming rate. La(1−x)SrxFe(1−y)GayO3−ή materials fulfil these two main requirements and were retained as membranes in catalytic membrane reactors (CMR). The variations of expansion and oxygen permeation of La(1−x)SrxFe(1−y)GayO3−ή perovskite materials with the partial substitution of lanthanum and iron cations, temperature and oxygen partial pressure, were studied. For low temperatures (800 ◩C), TEC, then dimensional stability of the membrane, and oxygen permeation of La(1−x)SrxFe(1−y)GayO3−ή materials, are significantly affected by Sr content and oxygen partial pressure. Ga has a stabilisation effect on the TEC and has no influence on oxygen permeation flux. A good compromise between dimensional stability and oxygen permeation of materials was found to be La0.7Sr0.3Fe0.7Ga0.3O3−ή compositio

    Study of supports for the final doublets of ATF2

    Get PDF
    We investigated supports for the final doublets of ATF2 with vertical relative motion to the floor of final doublets below 10nm. Our calculations of relative motion were done by using data of ATF ground motion. We studied the vibratory behaviour of a steel lightweight honeycomb table as a base for fixing magnets. First, the table was fixed to the floor by four steel feet at its corners. Its first vertical resonance was at 41Hz, which induces a non negligible relative motion (5.7nm) compared to ATF2 tolerances. Modal shape measurements show that the six first resonances of the table (below 150Hz) are rigid body modes in the six degrees of freedom. The conclusion of these measurements is that the table is very rigid and well adapted for ATF2 project but the rigidity of the four steel feet is not sufficient compared to the rigidity of the table. Consequently, the table was fixed to the floor on one entire face to break these six rigid body modes by three large steel plates. The first vertical resonance was then at higher frequencies (92Hz), which show that good boundary conditions were chosen for the table. The relative motion was then low (3.5nm above 0.1Hz) compared to ATF2 tolerances. To finish, we studied the vibratory behaviour of one ATF2 FD sextupole and one ATF2 FD quadrupole with their intermediary supports made at LAPP and used to fix these magnets to the honeycomb table. The measurements showed that the final doublets with their intermediary supports were well designed because the first resonance of sextupoles and quadrupoles was at high frequency (above 100 Hz and at 76Hz respectively), which induced a small relative motion of final doublets to the floor compared to ATF2 tolerances

    Resistive micromegas for sampling calorimetry

    Get PDF
    MicromegasInternational audienceMicromegas is an attractive option for a gaseous sampling calorimeter. It delivers proportional and fast signals, achieves high efficiency to minimum ionising particles with a compact design and shows well-uniform performance over meter-square areas. The current R&D focuses on large- size spark-protected Micromegas with integrated front-end electronics. It targets an application at future linear colliders (LC) and possible upgrades of LHC experiments for the running at high luminosity. In the later case, occasional sparking should be suppressed to avoid dead-time and technical solutions using resistive coatings are investigated. Small prototypes of resistive and non-resistive Micromegas were constructed and tested in a beam at DESY. Results are reported with emphasis on the impact of the resistive layer on the detector performance

    The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model

    Get PDF
    Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m.3243A>G mutation revealed a metabolic switch towards glycolysis with the production of lactic acid, severe defects in respiratory chain activity and complex I disassembly with an accumulation of assembly intermediates. Metabolites, NADH/NAD ratio, mitochondrial enzyme activities, oxygen consumption and BN-PAGE analysis were evaluated in mutant compared to control cells. A severe complex I enzymatic deficiency was identified associated with a major complex I disassembly with an accumulation of assembly intermediates of 400kDa. We showed that Ketone Bodies (KB) exposure for 4weeks associated with glucose deprivation significantly restored complex I stability and activity, increased ATP synthesis and reduced the NADH/NAD+ ratio, a key component of mitochondrial metabolism. In addition, without changing the mutant load, mtDNA copy number was significantly increased with KB, indicating that the absolute amount of wild type mtDNA copy number was higher in treated mutant cells. Therefore KB may constitute an alternative and promising therapy for MELAS syndrome, and could be beneficial for other mitochondrial diseases caused by complex I deficiency

    MICROMEGAS chambers for hadronic calorimetry at a future linear collider

    Full text link
    Prototypes of MICROMEGAS chambers, using bulk technology and analog readout, with 1x1cm2 readout segmentation have been built and tested. Measurements in Ar/iC4H10 (95/5) and Ar/CO2 (80/20) are reported. The dependency of the prototypes gas gain versus pressure, gas temperature and amplification gap thickness variations has been measured with an 55Fe source and a method for temperature and pressure correction of data is presented. A stack of four chambers has been tested in 200GeV/c and 7GeV/c muon and pion beams respectively. Measurements of response uniformity, detection efficiency and hit multiplicity are reported. A bulk MICROMEGAS prototype with embedded digital readout electronics has been assembled and tested. The chamber layout and first results are presented
    • 

    corecore