281 research outputs found

    Embedding approach to modeling electromagnetic fields in a complex two-dimensional environment

    Get PDF
    An approach is presented to combine the response of a two-dimensionally inhomogeneous dielectric object in a homogeneous environment with that of an empty inhomogeneous environment. This allows an efficient computation of the scattering behavior of the dielectric cylinder with the aid of the CGFFT method and a dedicated extrapolation procedure. Since a circular observation contour is adopted, an angular spectral representation can be employed for the embedding. Implementation details are discussed for the case of a closed 434 MHz microwave scanner, and the accuracy and efficiency of all steps in the numerical procedure are investigated. Guidelines are proposed for choosing computational parameters such as truncation limits and tolerances. We show that the embedding approach does not increase the CPU time with respect to the forward problem solution in a homogeneous environment, if only the fields on the observation contour are computed, and that it leads to a relatively small increase when the fields on the mesh are computed as well

    Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer

    Get PDF
    We demonstrate experimentally and theoretically that a local excitation of a single scatterer of relative dielectric permittivity {\epsilon} = 6 permits to excite broad dipolar and quadrupolar electric and magnetic resonances that shape the emission pattern in an un- precedented way. By suitably positioning the feed with respect to the sphere at a ?=3 distance, this compact antenna is able to spectrally sort the electromagnetic emission ei- ther in the forward or in the backward direction, together with a high gain in directivity. Materials with {\epsilon} = 6 can be found in the whole spectrum of frequencies promising Mie antennas to become an enabling technology in numbers of applications, ranging from quantum single photon sources to telecommunications

    On the calibration of a multistatic scattering matrix measured by a fixed circular array of antennas

    Get PDF
    International audienceThe calibration of the multistatic scattering matrix plays an important part in the construction of a quantitative microwave imaging system. For scattering measurement applications, the calibration must be performed on the amplitude and on the phase of the fields of interest. When the antennas are not completely identical, as for example with a multiplexed antennas array, a specific calibration procedure must be constructed. In the present work, we explain how a complex calibration matrix can be defined which takes advantage of the geometrical organization of the antennas. Indeed, for arrays of antennas positioned on a circle, the inherent symmetries of the configuration can be fully exploited by means of an adequate reorganization of the multistatic scattering matrix. In addition, the reorganization permits to detect antenna pairs which are not properly functioning and to estimate the signal-to-noise ratio. Experimental results obtained within a cylindrical cavity enclosed by a metallic casing are provided to assess the performance of the proposed calibration procedure.This calibration protocol, which is described here in detail, has already been applied to provide quantitative images of dielectric targets [1, 2]

    Combining spatial support information and shape-based method for tomographic imaging inside a microwave cylindrical scanner

    Get PDF
    International audienceA nonlinear inverse scattering problem is solved to retrieve the permittivity maps inside a microwave cylindrical scanner of circular cross-section. In this article, we show how we can improve this minimization scheme by taking advantage of several a priori pieces of information. In particular, a global representation based on a Zernike basis expansion is introduced in order to restrain the class of solutions to functions which have circular spatial support, as is the case with the encountered geometrical configuration. The level-set function formalism is also exploited as the targets are known to be homogeneous by parts. We will show how we can combine the spatial support information and the binary nature of the scatterer, with limited changes of the inversion algorithm. Both synthetic and experimental results will be presented in order to highlight the importance of combining all the pieces of available information

    Brewster quasi bound states in the continuum in all-dielectric metasurfaces from single magnetic-dipole resonance meta-atoms

    Full text link
    Bound states in the continuum (BICs) are ubiquitous in many areas of physics, attracting especial interest for their ability to confine waves with infinite lifetimes. Metasurfaces provide a suitable platform to realize them in photonics; such BICs are remarkably robust, being however complex to tune in frequency-wavevector space.Here we propose a scheme to engineer BICs and quasi-BICs with single magnetic-dipole resonance meta-atoms. Upon changing the orientation of the magnetic-dipole resonances, we show that the resulting quasi-BICs,emerging from the symmetry-protected BIC at normal incidence, become transparent for plane-wave illumination exactly at the magnetic-dipole angle, due to a Brewster-like effect. While yielding infinite Q-factors at normalincidence(canonical BIC), these are termed Brewster quasi-BICs since a transmission channel is always allowed that slightly widens resonances at oblique incidences. This is demonstrated experimentally through reflectance measurements in the microwave regime with high-refractive-index mm-disk metasurfaces. Such Brewster-inspired configuration is a plausible scenario to achieve quasi-BICs throughout the electromagnetic spectrum inaccessible through plane-wave illumination at given angles, which could be extrapolated to other kind of waves.Comment: 15 pages, 7 figures; typos corrected, Figs. 3 & 5 modified, new Fig. 7 & references adde

    Reduction of the model noise in non-linear reconstruction via an efficient calculation of the incident field: application to a 434 MHz Scanner

    Get PDF
    Microwave tomography has been drastically boosted by the development of efficient reconstruction algorithms based on an iterative solution of the corresponding non-linear inverse problem. The accuracy of the electric field radiated by the antennas of a microwave scanner, inside the target area, has been shown to play a significant role on the overall image quality. Taking into account the antenna environment is of prime importance, especially when operating at low frequency. For instance, the wall of a 60 cm diameter whole-body microwave scanner cannot be neglected at 434 MHz, even when using the immersion technique consisting of putting the target in water. Indeed, at such a frequency, the attenuation introduced by water is not sufficient to avoid multiple reflections on the scanner boundary walls. Consequently, the method of calculating the incident field constitutes a key factor in iteratively solving non-linear inverse problems. The selected technique must accommodate high accuracy while maintaining acceptable calculation complexity. In this paper, three distinct techniques are analysed. They are based on the use of i) free-space and ii) non free-space Green's function, and iii) a FDTD approach. All these techniques have been firstly investigated for their 2D version, being used in 2D reconstruction algorithms. However, the scattered field data are collected in a 3D scanner. For assessing the validity of the previous 2D techniques, their results have been compared to both experimentally and 3D-FDTD results.Peer ReviewedPostprint (published version

    Microwave imaging techniques for biomedical applications

    Get PDF
    Microwaves have been considered for medical applications involving the detection of organ movements and changes in tissue water content. More particularly cardiopulmonary interrogation via microwaves has resulted in various sensors monitoring ventricular volume change or movement, arterial wall motion, respiratory movements, pulmonary oedema, etc. In all these applications, microwave sensors perform local measurements and need to be displaced for obtaining an image reproducing the spatial variations of a given quantity. Recently, advances in the area of inverse scattering theory and microwave technology have made possible the development of microwave imaging and tomographic instruments. This paper provides a review of such equipment developed at Suplec and UPC Barcelona, within the frame of successive French-Spanish PICASSO cooperation programs. It reports the most significant results and gives some perspectives for future developments. Firstly, a brief historical survey is given. Then, both technological and numerical aspects are considered. The results of preliminary pre-clinical assessments and in-lab experiments allow to illustrate the capabilities of the existing equipment, as well as its difficulty in dealing with clinical situations. Finally, some remarks on the expected development of microwave imaging techniques for biomedical applications are given.Peer ReviewedPostprint (published version

    Aperture antenna modelling by a finite number of elemental dipoles from truncated spherical field measurement: Experimental investigation

    Get PDF
    International audienceA method to determine a distribution of a finite number of elementary dipoles that reproduce the radiation behaviour of the antenna under test (AUT) from truncated spherical field measurements is proposed. It is based on the substitution of the actual antenna by a finite number of equivalent infinitesimal dipoles (electric and magnetic), distributed over the antenna aperture. This equivalent set of elementary dipoles is optimized using the transmission coefficient involving the spherical wave expansion of the measured field and using an appropriate matching method. Once the current excitation of each dipole is known, the radiated field of the antenna at different distances can be rapidly determined. The reliability and the accuracy of the method are shown using experimental data issued from the measurement of an X-band horn antenna, in two different measurement setups
    • …
    corecore