229 research outputs found

    Persistent Transport Barrier on the West Florida Shelf

    Get PDF
    Analysis of drifter trajectories in the Gulf of Mexico has revealed the existence of a region on the southern portion of the West Florida Shelf (WFS) that is not visited by drifters that are released outside of the region. This so-called ``forbidden zone'' (FZ) suggests the existence of a persistent cross-shelf transport barrier on the southern portion of the WFS. In this letter a year-long record of surface currents produced by a Hybrid-Coordinate Ocean Model simulation of the WFS is used to identify Lagrangian coherent structures (LCSs), which reveal the presence of a robust and persistent cross-shelf transport barrier in approximately the same location as the boundary of the FZ. The location of the cross-shelf transport barrier undergoes a seasonal oscillation, being closer to the coast in the summer than in the winter. A month-long record of surface currents inferred from high-frequency (HF) radar measurements in a roughly 60 km ×\times 80 km region on the WFS off Tampa Bay is also used to identify LCSs, which reveal the presence of robust transient transport barriers. While the HF-radar-derived transport barriers cannot be unambiguously linked to the boundary of the FZ, this analysis does demonstrate the feasibility of monitoring transport barriers on the WFS using a HF-radar-based measurement system. The implications of a persistent cross-shelf transport barrier on the WFS for the development of harmful algal blooms on the shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter

    Interaction of desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism

    Get PDF
    Aims: To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). Methods and Results: Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biofilms were metabolically more active on SS 304 than on PMMA. Activity tests with bacteria from both biofilms at steady state also showed that the doubling time was lower for bacteria from SS 304 biofilms. The influence of chromium and nickel, elements of SS 304 composition, was also tested on a cellular suspension of Des. desulfuricans. Nickel decreased the bacterial doubling time, while chromium had no significant effect. Conclusions: The following mechanism is hypothesized: a Des. desulfuricans biofilm grown on a SS 304 surface in anaerobic conditions leads to the weakening of the metal passive layer and to the dissolution in the bulk phase of nickel ions that have a positive influence on the sulfate-reducing bacteria metabolism. This phenomenon may enhance the biocorrosion process. Significance and Impact of the Study: A better understanding of the interactions between metallic surfaces such as stainless steel and bacteria commonly implied in the corrosion phenomena which is primordial to fight biocorrosion.Programme Praxis XXI; University of Santiago de Compostela
    corecore