12 research outputs found

    Interferon-gamma impairs maintenance and alters hematopoietic support of bone marrow mesenchymal stromal cells

    Get PDF
    Bone marrow (BM) mesenchymal stromal cells (MSCs) provide microenvironmental support to hematopoietic stem and progenitor cells (HSPCs). Culture-expanded MSCs are interesting candidates for cellular therapies due to their immunosuppressive and regenerative potential which can be further enhanced by pretreatment with interferon-gamma (IFN-γ). However, it remains unknown whether IFN-γ can also influence hematopoietic support by BM-MSCs. In this study, we elucidate the impact of IFN-γ on the hematopoietic support of BM-MSCs. We found that IFN-γ increases expression of interleukin (IL)-6 and stem cell factor by human BM-MSCs. IFN-γ-treated BM-MSCs drive HSPCs toward myeloid commitment in vitro, but impair subsequent differentiation of HSPC. Moreover, IFN-γ-ARE-Del mice with increased IFN-γ production specifically lose their BM-MSCs, which correlates with a loss of hematopoietic stem cells\u27 quiescence. Although IFN-γ treatment enhances the immunomodulatory function of MSCs in a clinical setting, we conclude that IFN-γ negatively affects maintenance of BM-MSCs and their hematopoietic support in vitro and in vivo

    CXCR4, but not CXCR3, drives CD8 +

    No full text

    Peripheral and systemic antigens elicit an expandable pool of resident memory CD8(+) T cells in the bone marrow

    Get PDF
    BM has been put forward as a major reservoir for memory CD8+  T cells. In order to fulfill that function, BM should "store" memory CD8+ T cells, which in biological terms would require these "stored" memory cells to be in disequilibrium with the circulatory pool. This issue is a matter of ongoing debate. Here, we unequivocally demonstrate that murine and human BM harbors a population of tissue-resident memory CD8+ T (TRM ) cells. These cells develop against various pathogens, independently of BM infection or local antigen recognition. BM CD8+ TRM cells share a transcriptional program with resident lymphoid cells in other tissues; they are polyfunctional cytokine producers and dependent on IL-15, Blimp-1, and Hobit. CD8+ TRM cells reside in the BM parenchyma, but are in close contact with the circulation. Moreover, this pool of resident T cells is not size-restricted and expands upon peripheral antigenic re-challenge. This works extends the role of the BM in the maintenance of CD8+ T cell memory to include the preservation of an expandable reservoir of functional, non-recirculating memory CD8+ T cells, which develop in response to a large variety of peripheral antigens

    CD8+ T cells expand stem and progenitor cells in favorable but not adverse risk acute myeloid leukemia.

    Get PDF
    CD8+ T cell immunosurveillance is crucial in solid tumors and T cell dysfunction leads to tumor progression. In contrast, the role of CD8+ T cells in the control of leukemia is less clear. We characterized the molecular signature of leukemia stem/progenitor cells (LSPCs) and paired CD8+ T cells in patients with acute myeloid leukemia (AML). Epigenetic alterations via histone deacetylation reduced the expression of immune-related genes in bone marrow (BM)-infiltrating CD8+ T cells. Surprisingly, a silenced gene expression pattern in CD8+ T cells significantly correlated with an improved prognosis. To define interactions between CD8+ T cells and LSPCs, we performed comprehensive correlative network modeling. This analysis indicated that CD8+ T cells contribute to the maintenance/expansion of LSPCs, particularly in favorable risk AML. Functionally, CD8+ T cells in favorable AML induced the expansion of LSPCs by stimulating the autocrine production of important hematopoietic cytokines such as interleukin (IL)-3. In contrast, LSPCs in aggressive AML were characterized by a higher activation of stemness/proliferation-related pathways and develop independent of BM CD8+ T cells. Overall, our study indicates that CD8+ T cells support and expand LSPCs in favorable risk AML whereas intermediate and adverse risk AML possess the intrinsic molecular abnormalities to develop independently
    corecore