500 research outputs found
Modelling atmospheric transport of ?-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP
International audienceThe Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The ?-isomer of the pesticide hexachlorocyclohexane (?-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of ?-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs
Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP
International audienceThe Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The ?-isomer of the pesticide hexachlorocyclohexane (?-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of ?-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange proceses of POPs
Conceptualising connections: energy demand, infrastructures and social practices
Problems of climate change present new challenges for social theory. In this paper we focus on the task of understanding and analysing car dependence, using this as a case through which to introduce and explore what we take to be central but underdeveloped questions about how infrastructures and complexes of social practice connect across space and time. In taking this approach we work with the proposition that forms of energy consumption, including those associated with automobility, are usefully understood as outcomes of interconnected patterns of social practices, including working, shopping, visiting friends and family, going to school and so forth. We also acknowledge that social practices are partly constituted by, and always embedded in material arrangements. Linking these two features together we suggest that forms of car-dependence emerge through the intersection of infrastructural arrangements that are integral to the conduct of many practices at once. We consequently explore the significance of professional â and not only âordinaryâ â practices, especially those of planners and designers who are involved in reconfiguring infrastructures of different scales, and in the practice dynamics that follow
Impacts of climate change on air pollution levels in the Northern Hemisphere with special focus on Europe and the Arctic
International audienceThe response of a selected number of chemical species is inspected with respect to climate change. The coupled Atmosphere-Ocean General Circulation Model ECHAM4-OPYC3 is providing meteorological fields for the Chemical long-range Transport Model DEHM. Three selected decades (1990s, 2040s and 2090s) are inspected. The 1990s are used as a reference and validation period. In this decade an evaluation of the output from the DEHM model with ECHAM4-OPYC3 meteorology input data is carried out. The model results are tested against similar model simulations with MM5 meteorology and against observations from the EMEP monitoring sites in Europe. The test results from the validation period show that the overall statistics (e.g. mean values and standard deviations) are similar for the two simulations. However, as one would expect the model setup with climate input data fails to predict correctly the timing of the variability in the observations. The overall performance of the ECHAM4-OPYC3 setup as meteorological input to the DEHM model is shown to be acceptable according to the applied ranking method. It is concluded that running a chemical long-range transport model on data from a "free run" climate model is scientifically sound. From the model runs of the three decades, it is found that the overall trend detected in the evolution of the chemical species, is the same between the 1990 decade and the 2040 decade and between the 2040 decade and the 2090 decade, respectively. The dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. Throughout the 21th century the ECHAM4-OPYC3 projects a global mean temperature increase of 3 K with local maxima up to 11 K in the Arctic winter based on the IPCC A2 emission scenario. As a consequence of this temperature increase, the temperature dependent biogenic emission of isoprene is predicted to increase significantly over land by the DEHM model. This leads to an increase in the O3 production and together with an increase in water vapor to an increase in the number of free OH radicals. Furthermore this increase in the number of OH radicals contributes to a significant change in the typical life time of many species, since OH are participating in a large number of chemical reactions. It is e.g. found that more SO42? will be present in the future over the already polluted areas and this increase can be explained by an enhanced conversion of SO2 to SO42?
Spatial and temporal variations in ammonia emissions â a freely accessible model code for Europe
Deriving a parameterisation of ammonia emissions for use in chemistry-transport models (CTMs) is a complex problem as the emission varies locally as a result of local climate and local agricultural management. In current CTMs such factors are generally not taken into account. This paper demonstrates how local climate and local management can be accounted for in CTMs by applying a modular approach for deriving data as input to a dynamic ammonia emission model for Europe. Default data are obtained from information in the RAINS system, and it is demonstrated how this dynamic emission model based on these input data improves the NH<sub>3</sub> calculations in a CTM model when the results are compared with calculations obtained by traditional methods in emission handling. It is also shown how input data can be modified over a specific target region resulting in even further improvement in performance over this domain. The model code and the obtained default values for the modelling experiments are available as supplementary information to this article for use by the modelling community on similar terms as the EMEP CTM model: the GPL licencse v3
Decarbonisation and its discontents: a critical energy justice perspective on four low-carbon transitions
Low carbon transitions are often assumed as normative goods, because they supposedly reduce carbon emissions, yet without vigilance there is evidence that they can in fact create new injustices and vulnerabilities, while also failing to address pre-existing structural drivers of injustice in energy markets and the wider socio-economy. With this in mind, we examine four European low-carbon transitions from an unusual normative perspective: that of energy justice. Because a multitude of studies looks at the co-benefits renewable energy, low-carbon mobility, or climate change mitigation, we instead ask in this paper: what are the types of injustices associated with low-carbon transitions? Relatedly, in what ways do low-carbon transitions worsen social risks or vulnerabilities? Lastly, what policies might be deployed to make these transitions more just? We answer these questions by first elaborating an âenergy justiceâ framework consisting of four distinct dimensionsâdistributive justice (costs and benefits), procedural justice (due process), cosmopolitan justice (global externalities), and recognition justice (vulnerable groups). We then examine four European low-carbon transitionsânuclear power in France, smart meters in Great Britain, electric vehicles in Norway, and solar energy in Germanyâthrough this critical justice lens. In doing so, we draw from original data collected from 64 semi-structured interviews with expert partisans as well as five public focus groups and the monitoring of twelve internet forums. We document 120 distinct energy injustices across these four transitions, including 19 commonly recurring injustices. We aim to show how when low-carbon transitions unfold, deeper injustices related to equity, distribution, and fairness invariably arise
Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS
A local-scale Gaussian dispersion-deposition model (OML-DEP) has been coupled to a regional chemistry-transport model (DEHM with a resolution of approximately 6 km Ă 6 km over Denmark) in the Danish Ammonia Modelling System, DAMOS. Thereby, it has been possible to model the distribution of ammonia concentrations and depositions on a spatial resolution down to 400 m Ă 400 m for selected areas in Denmark. DAMOS has been validated against measured concentrations from the dense measuring network covering Denmark. Here measured data from 21 sites are included and the validation period covers 2â5 years within the period 2005â2009. A standard time series analysis (using statistic parameters like correlation and bias) shows that the coupled model system captures the measured time series better than the regional- scale model alone. However, our study also shows that about 50% of the modelled concentration level at a given location originates from non-local emission sources. The local-scale model covers a domain of 16 km Ă 16 km, and of the locally released ammonia (NH<sub>3</sub>) within this domain, our simulations at five sites show that 14â27% of the locally (within 16 km Ă 16 km) emitted NH<sub>3</sub> also deposits locally. These results underline the importance of including both high-resolution local-scale modelling of NH<sub>3</sub> as well as the regional-scale component described by the regional model. The DAMOS system can be used as a tool in environmental management in relation to assessments of total nitrogen load of sensitive nature areas in intense agricultural regions. However, high spatio-temporal resolution in input parameters like NH<sub>3</sub> emissions and land-use data is required
Comparing nuclear power trajectories in Germany and the UK: from âregimes' to âdemocraciesâ in sociotechnical transitions and Discontinuities
This paper focuses on arguably the single most striking contrast in contemporary major energy politics in Europe (and even the developed world as a whole): the starkly differing civil nuclear policies of Germany and the UK. Germany is seeking entirely to phase out nuclear power by 2022. Yet the UK advocates a ânuclear renaissanceâ, promoting the most ambitious new nuclear construction programme in Western Europe.Here,this paper poses a simple yet quite fundamental question: what are the particular divergent conditions most strongly implicated in the contrasting developments in these two countries. With nuclear playing such an iconic role in historical discussions over technological continuity and transformation, answering this may assist in wider understandings of sociotechnical incumbency and discontinuity in the burgeoning field ofâsustainability transitionsâ. To this end, an âabductiveâ approach is taken: deploying nine potentially relevant criteria for understanding the different directions pursued in Germany and the UK. Together constituted by 30 parameters spanning literatures related to socio-technical regimes in general as well as nuclear technology in particular, the criteria are divided into those that are âinternalâ and âexternalâ to the âfocal regime configurationâ of nuclear power and associated âchallenger technologiesâ like renewables.
It is âinternalâ criteria that are emphasised in conventional sociotechnical regime theory, with âexternalâ criteria relatively less well explored. Asking under each criterion whether attempted discontinuation of nuclear power would be more likely in Germany or the UK, a clear picture emerges. âInternalâ criteria suggest attempted nuclear discontinuation should be more likely in the UK than in Germanyâ the reverse of what is occurring.
âExternalâ criteria are more aligned with observed dynamics âespecially those relating to military nuclear commitments and broader âqualities of democracyâ. Despite many differences of framing concerning exactly what constitutes âdemocracyâ, a rich political science literature on this point is unanimous in characterising Germany more positively than the UK. Although based only on a single case,a potentially important question is nonetheless raised as to whether sociotechnical regime theory might usefully give greater attention to the general importance of various aspects of democracy in constituting conditions for significant technological discontinuities and transformations. If so, the policy implications are significant. A number of important areas are identified for future research, including the roles of diverse understandings and specific aspects of democracy and the particular relevance of military nuclear commitmentsâ whose under-discussion in civil nuclear policy literatures raises its own questions of democratic accountability
Europe-wide air pollution modeling from 2000 to 2019 using geographically weighted regression
Previous European land-use regression (LUR) models assumed fixed linear relationships between air pollution concentrations and predictors such as traffic and land use. We evaluated whether including spatially-varying relationships could improve European LUR models by using geographically weighted regression (GWR) and random forest (RF). We built separate LUR models for each year from 2000 to 2019 for NO2, O3, PM2.5 and PM10 using annual average monitoring observations across Europe. Potential predictors included satellite retrievals, chemical transport model estimates and land-use variables. Supervised linear regression (SLR) was used to select predictors, and then GWR estimated the potentially spatially-varying coefficients. We developed multi-year models using geographically and temporally weighted regression (GTWR). Five-fold cross-validation per year showed that GWR and GTWR explained similar spatial variations in annual average concentrations (average R(2) = NO2: 0.66; O3: 0.58; PM10: 0.62; PM2.5: 0.77), which are better than SLR (average R(2) = NO2: 0.61; O3: 0.46; PM10: 0.51; PM2.5: 0.75) and RF (average R(2) = NO2: 0.64; O3: 0.53; PM10: 0.56; PM2.5: 0.67). The GTWR predictions and a previously-used method of back-extrapolating 2010 model predictions using CTM were overall highly correlated (R(2) > 0.8) for all pollutants. Including spatially-varying relationships using GWR modestly improved European air pollution annual LUR models, allowing time-varying exposure-health risk models
- âŠ