11 research outputs found

    Nearest Neighbor Distances on a Circle: Multidimensional Case

    Full text link
    We study the distances, called spacings, between pairs of neighboring energy levels for the quantum harmonic oscillator. Specifically, we consider all energy levels falling between E and E+1, and study how the spacings between these levels change for various choices of E, particularly when E goes to infinity. Primarily, we study the case in which the spring constant is a badly approximable vector. We first give the proof by Boshernitzan-Dyson that the number of distinct spacings has a uniform bound independent of E. Then, if the spring constant has components forming a basis of an algebraic number field, we show that, when normalized up to a unit, the spacings are from a finite set. Moreover, in the specific case that the field has one fundamental unit, the probability distribution of these spacings behaves quasiperiodically in log E. We conclude by studying the spacings in the case that the spring constant is not badly approximable, providing examples for which the number of distinct spacings is unbounded.Comment: Version 2 is updated to include more discussion of previous works. 17 pages with five figures. To appear in the Journal of Statistical Physic

    Children living with HIV in Europe: do migrants have worse treatment outcomes?

    No full text
    International audienceTo assess the effect of migrant status on treatment outcomes among children living with HIV in Europe

    A highly virulent variant of HIV-1 circulating in the Netherlands.

    No full text
    We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log <sub>10</sub> increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence

    Human immunodeficiency virus continuum of care in 11 european union countries at the end of 2016 overall and by key population: Have we made progress?

    Get PDF
    Background. High uptake of antiretroviral treatment (ART) is essential to reduce human immunodeficiency virus (HIV) transmission and related mortality; however, gaps in care exist. We aimed to construct the continuum of HIV care (CoC) in 2016 in 11 European Union (EU) countries, overall and by key population and sex. To estimate progress toward the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 target, we compared 2016 to 2013 estimates for the same countries, representing 73% of the population in the region. Methods. A CoC with the following 4 stages was constructed: number of people living with HIV (PLHIV); proportion of PLHIV diagnosed; proportion of those diagnosed who ever initiated ART; and proportion of those ever treated who achieved viral suppression at their last visit. Results. We estimated that 87% of PLHIV were diagnosed; 92% of those diagnosed had ever initiated ART; and 91% of those ever on ART, or 73% of all PLHIV, were virally suppressed. Corresponding figures for men having sex with men were: 86%, 93%, 93%, 74%; for people who inject drugs: 94%, 88%, 85%, 70%; and for heterosexuals: 86%, 92%, 91%, 72%. The proportion suppressed of all PLHIV ranged from 59% to 86% across countries. Conclusions. The EU is close to the 90-90-90 target and achieved the UNAIDS target of 73% of all PLHIV virally suppressed, significant progress since 2013 when 60% of all PLHIV were virally suppressed. Strengthening of testing programs and treatment support, along with prevention interventions, are needed to achieve HIV epidemic control

    Recent Advances in the Novel Formulation of Docosahexaenoic Acid for Effective Delivery, Associated Challenges and Its Clinical Importance

    No full text

    Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model

    Get PDF
    The RAPTOR code is a control-oriented core plasma profile simulator with various applications in control design and verification, discharge optimization and real-time plasma simulation. To date, RAPTOR was capable of simulating the evolution of poloidal flux and electron temperature using empirical transport models, and required the user to input assumptions on the other profiles and plasma parameters. We present an extension of the code to simulate the temperature evolution of both ions and electrons, as well as the particle density transport. A proof-of-principle neural-network emulation of the quasilinear gyrokinetic QuaLiKiz transport model is coupled to RAPTOR for the calculation of first-principle-based heat and particle turbulent transport. These extended capabilities are demonstrated in a simulation of a JET discharge. The multi-channel simulation requires ∼0.2 s to simulate 1 second of a JET plasma, corresponding to ∼20 energy confinement times, while predicting experimental profiles within the limits of the transport model. The transport model requires no external inputs except for the boundary condition at the top of the H-mode pedestal. This marks the first time that simultaneous, accurate predictions of Te, Tiand nehave been obtained using a first-principle-based transport code that can run in faster-than-real-time for present-day tokamaks

    Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks - A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET

    No full text
    This paper presents a survey of the experiments on runaway electrons (RE) carried out recently in frames of EUROFusion Consortium in different tokamaks: COMPASS, ASDEX-Upgrade, TCV and JET. Massive gas injection (MGI) has been used in different scenarios for RE generation in small and medium-sized tokamaks to elaborate the most efficient and reliable ones for future RE experiments. New data on RE generated at disruptions in COMPASS and ASDEX-Upgrade was collected and added to the JET database. Different accessible parameters of disruptions, such as current quench rate, conversion rate of plasma current into runaways, etc have been analysed for each tokamak and compared to JET data. It was shown, that tokamaks with larger geometrical sizes provide the wider limits for spatial and temporal variation of plasma parameters during disruptions, thus extending the parameter space for RE generation. The second part of experiments was dedicated to study of RE generation in stationary discharges in COMPASS, TCV and JET. Injection of Ne/Ar have been used to mock-up the JET MGI runaway suppression experiments. Secondary RE avalanching was identified and quantified for the first time in the TCV tokamak in RE generating discharges after massive Ne injection. Simulations of the primary RE generation and secondary avalanching dynamics in stationary discharges has demonstrated that RE current fraction created via avalanching could achieve up to 70-75% of the total plasma current in TCV. Relaxations which are reminiscent the phenomena associated to the kinetic instability driven by RE have been detected in RE discharges in TCV. Macroscopic parameters of RE dominating discharges in TCV before and after onset of the instability fit well to the empirical instability criterion, which was established in the early tokamaks and examined by results of recent numerical simulations
    corecore