155 research outputs found

    Linking forest cover, soil erosion and mire hydrology to late-Holocene human activity and climate in NW Spain

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm).This article has been made available through the Brunel Open Access Publishing Fund.Forest clearance is one of the main drivers of soil erosion and hydrological changes in mires, although climate may also play a significant role. Because of the wide range of factors involved, understanding these complex links requires long-term multi-proxy approaches and research on the best proxies to focus. A peat core from NW Spain (Cruz do Bocelo mire), spanning the last ~3000 years, has been studied at high resolution by physical (density and loss on ignition (LOI)), geochemical (elemental composition) and palynological (pollen and non-pollen palynomorphs) analyses. Proxies related to mineral matter fluxes from the catchment (lithogenic tracers, Glomus and Entorrhiza), rainfall (Bromine), mire hydrology (HdV-18), human pressure (Cerealia-type, nitrophilous taxa and coprophilous fungi) and forest cover (mesophilous tree taxa) were the most useful to reconstruct the evolution of the mire and its catchment. Forest clearance for farming was one of the main drivers of environmental change from at least the local Iron Age (~2685 cal. yr BP) onwards. The most intense phase of deforestation occurred during Roman and Germanic times and the late Middle Ages. During these phases, the entire catchment was affected, resulting in enhanced soil erosion and severe hydrological modifications of the mire. Climate, especially rainfall, may have also accelerated these processes during wetter periods. However, it is noteworthy that the hydrology of the mire seems to have been insensitive to rainfall variations when mesophilous forest dominated. Abrupt changes were only detected once intense forest clearance commenced during the Iron Age/Roman transition (~2190 cal. yr BP) phase, which represented a tipping point in catchment's ability to buffer impacts. Overall, our findings highlight the importance of studying ecosystems' long-term trajectories and catchment-wide processes when implementing mire habitat protection measures.This work was funded by the projects CGL2010-20672 (Plan Nacional I+D+i, Spanish Ministry of Science and Innovation) and 10PXIB200182PR (General Directorate of I+D, Xunta de Galicia). N Silva-Sánchez and L López-Merino are currently supported by a FPU predoctoral scholarship (AP2010-3264) funded by the Spanish Government and a MINT postdoctoral fellowship funded by the Brunel Institute for the Environment, respectively

    Climate variability of southern Chile since the Last Glacial Maximum : a continuous sedimentological record from Lago Puyehue (40°S)

    Get PDF
    Author Posting. © Springer, 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Paleolimnology 39 (2008): 179-195, doi:10.1007/s10933-007-9117-y.This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon datings. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the last glacial maximum, the Chilean Lake District was characterized by 3 abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the last glacial maximum at 17,300 cal yr BP; (2) a 13,100-12,300 cal yr BP cold event, ending rapidly and interpreted as the local counter part of the Younger Dryas cold period, and (3) a 3400-2900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change lags behind the northern hemisphere Younger Dryas cold period by 500 to 1000 years.This research is supported by the Belgian OSTC project EV/12/10B "A continuous Holocene record of ENSO variability in southern Chile"

    Quantification of tumour vasculature and hypoxia by immunohistochemical staining and HbO2 saturation measurements

    Get PDF
    Despite the possibility that tumour hypoxia may limit radiotherapeutic response, the underlying mechanisms remain poorly understood. A new methodology has been developed in which information from several sophisticated techniques is combined and analysed at a microregional level. First, tumour oxygen availability is spatially defined by measuring intravascular blood oxygen saturations (HbO2) cryospectrophotometrically in frozen tumour blocks. Second, hypoxic development is quantified in adjacent sections using immunohistochemical detection of a fluorescently conjugated monoclonal antibody (ELK3-51) to a nitroheterocyclic hypoxia marker (EF5), thereby providing information relating to both the oxygen consumption rates and the effective oxygen diffusion distances. Third, a combination of fluorescent (Hoechst 33342 or DiOC7(3)) and immunohistological (PECAM-1/CD31) stains is used to define the anatomical vascular densities and the fraction of blood vessels containing flow. Using a computer-interfaced microscope stage, image analysis software and a 3-CCD colour video camera, multiple images are digitized, combined to form a photo-montage and revisited after each of the three staining protocols. By applying image registration techniques, the spatial distribution of HbO2 saturations is matched to corresponding hypoxic marker intensities in adjacent sections. This permits vascular configuration to be related to oxygen availability and allows the hypoxic marker intensities to be quantitated in situ. © 1999 Cancer Research Campaig

    Human impact on the hydroenvironment of Lake Parishan, SW Iran, through the late Holocene

    Get PDF
    A multiproxy record from Lake Parishan, SW Iran, shows human impact on the lake and its catchment over the last 4000 years. The Parishan record provides evidence of changes in lake hydrology, from ostracod, diatom and isotope analyses, that are directly linked to human activity in the catchment; recorded by pollen and charcoal and supported by regional archaeological and historical data. The lake ostracod fauna is particularly sensitive to human induced catchment alterations and allow us to identify changes in catchment hydrology that are due to more than a simple change in precipitation: evaporation state. Oxygen isotope data from endogenic carbonates follow these faunal changes but also displays a longer trend to more positive values through the period, coincident with regional patterns of water balance for the late Holocene in the eastern Mediterranean

    Microscopic fungi as subfossil woodland indicators

    Get PDF
    An in situ subfossil oak trunk located on the Lancashire coastal plain in northwest England provided a unique opportunity for a detailed multiproxy investigation attempting to link precisely macrofossil evidence for a palaeowoodland to its microfossil depositional record. Dendrochronological analyses revealed that the tree died shortly after 4189 bc and that it was part of a mire-rooting woodland between 4433 and 4165 bc. Rising water levels are implicated in prolonged growth restrictions evident in this woodland and inferred subsequent widespread tree mortality. The novelty of the research reported here is in the use of microscopic fungal indicators to identify precisely a stratigraphic horizon that can be correlated with this specific palaeoecological event, providing a routine method for future correlations of macro- and microfossil records

    Prognostic Factors in 77 Curative Chest Wall Resections for Isolated Breast Cancer Recurrence

    Get PDF
    Background: Full-thickness chest wall resection (CWR) is the preferred treatment for breast cancer (BC) patients with extensive isolated locoregional recurrence. It remains a challenge to select patients that will benefit most from this treatment. The aim of this study was to define prognostic factors in patients who undergo CWR with curative intent. Methods: BC patients who underwent a CWR with curative intent for recurrence of disease between 1986 and 2006 were included in this retrospective study. Twenty-two factors were studied in a univariate analyses, and multivariate stepwise Cox regression analyses was performed. Results: Seventy-seven patients were included in this study. The 5-year overall survival was 25%. There was one postoperative death. Univariate analyses showed that three prognostic factors were significantly correlated with OS and disease-free survival: (1) interval between primary treatment and CWR (P = .02 and .004, respectively), (2) chemotherapy for recurrence (P = .05 and .05, respectively), and (3) resection specimen smaller than 150 cm2(P = .03 and .009, respectively). An interval lasting >10 years between primary treatment and CWR remained statistically significantly correlated with better overall survival and disease-free survival after multivariate analyses. Conclusions: CWR is a safe treatment in patients who have isolated extensive BC recurrence. The best survival outcome was seen in patients after a disease-free interval of >10 years. Existing data show that adjuvant radiotherapy and adjuvant hormone therapy for estrogen-positive tumors improves overall survival. Neoadjuvant chemotherapy may be considered in individual patients

    Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy

    Get PDF
    The role of nitric oxide (NO) in the response to Photofrin-based photodynamic therapy (PDT) was investigated using mouse tumour models characterized by either relatively high or low endogenous NO production (RIF and SCCVII vs EMT6 and FsaR, respectively). The NO synthase inhibitors Nω-nitro- L -arginine (L-NNA) or Nω-nitro- L -arginine methyl ester (L-NAME), administered to mice immediately after PDT light treatment of subcutaneously growing tumours, markedly enhanced the cure rate of RIF and SCCVII models, but produced no obvious benefit with the EMT6 and FsaR models. Laser Doppler flowmetry measurement revealed that both L-NNA and L-NAME strongly inhibit blood flow in RIF and SCCVII tumours, but not in EMT6 and FsaR tumours. When injected intravenously immediately after PDT light treatment, L-NAME dramatically augmented the decrease in blood flow in SCCVII tumours induced by PDT. The pattern of blood flow alterations in tumours following PDT indicates that, even with curative doses, regular circulation may be restored in some vessels after episodes of partial or complete obstruction. Such conditions are conducive to the induction of ischaemia-reperfusion injury, which is instigated by the formation of superoxide radical. The administration of superoxide dismutase immediately after PDT resulted in a decrease in tumour cure rates, thus confirming the involvement of superoxide in the anti-tumour effect. The results of this study demonstrate that NO participates in the events associated with PDT-mediated tumour destruction, particularly in the vascular response that is of critical importance for the curative outcome of this therapy. The level of endogenous production of NO in tumours appears to be one of the determinants of sensitivity to PDT. © 2000 Cancer Research Campaig

    Identification of novel SNPs of ABCD1, ABCD2, ABCD3, and ABCD4 genes in patients with X-linked adrenoleukodystrophy (ALD) based on comprehensive resequencing and association studies with ALD phenotypes

    Get PDF
    Adrenoleukodystrophy (ALD) is an X-linked disorder affecting primarily the white matter of the central nervous system occasionally accompanied by adrenal insufficiency. Despite the discovery of the causative gene, ABCD1, no clear genotype–phenotype correlations have been established. Association studies based on single nucleotide polymorphisms (SNPs) identified by comprehensive resequencing of genes related to ABCD1 may reveal genes modifying ALD phenotypes. We analyzed 40 Japanese patients with ALD. ABCD1 and ABCD2 were analyzed using a newly developed microarray-based resequencing system. ABCD3 and ABCD4 were analyzed by direct nucleotide sequence analysis. Replication studies were conducted on an independent French ALD cohort with extreme phenotypes. All the mutations of ABCD1 were identified, and there was no correlation between the genotypes and phenotypes of ALD. SNPs identified by the comprehensive resequencing of ABCD2, ABCD3, and ABCD4 were used for association studies. There were no significant associations between these SNPs and ALD phenotypes, except for the five SNPs of ABCD4, which are in complete disequilibrium in the Japanese population. These five SNPs were significantly less frequently represented in patients with adrenomyeloneuropathy (AMN) than in controls in the Japanese population (p = 0.0468), whereas there were no significant differences in patients with childhood cerebral ALD (CCALD). The replication study employing these five SNPs on an independent French ALD cohort, however, showed no significant associations with CCALD or pure AMN. This study showed that ABCD2, ABCD3, and ABCD4 are less likely the disease-modifying genes, necessitating further studies to identify genes modifying ALD phenotypes
    corecore