4,212 research outputs found

    Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations

    Full text link
    During the last decade, lattice-Boltzmann (LB) simulations have been improved to become an efficient tool for determining the permeability of porous media samples. However, well known improvements of the original algorithm are often not implemented. These include for example multirelaxation time schemes or improved boundary conditions, as well as different possibilities to impose a pressure gradient. This paper shows that a significant difference of the calculated permeabilities can be found unless one uses a carefully selected setup. We present a detailed discussion of possible simulation setups and quantitative studies of the influence of simulation parameters. We illustrate our results by applying the algorithm to a Fontainebleau sandstone and by comparing our benchmark studies to other numerical permeability measurements in the literature.Comment: 14 pages, 11 figure

    The scientific basis of combination therapy for chronic hepatitis B functional cure

    Get PDF
    Functional cure of chronic hepatitis B (CHB) — or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy — is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available

    Smooth muscle cells affect differential nanoparticle accumulation in disturbed blood flow-induced murine atherosclerosis

    Get PDF
    Atherosclerosis is a lipid-driven chronic inflammatory disease that leads to the formation of plaques in the inner lining of arteries. Plaques form over a range of phenotypes, the most severe of which is vulnerable to rupture and causes most of the clinically significant events. In this study, we evaluated the efficacy of nanoparticles (NPs) to differentiate between two plaque phenotypes based on accumulation kinetics in a mouse model of atherosclerosis. This model uses a perivascular cuff to induce two regions of disturbed wall shear stress (WSS) on the inner lining of the instrumented artery, low (upstream) and multidirectional (downstream), which, in turn, cause the development of an unstable and stable plaque phenotype, respectively. To evaluate the influence of each WSS condition, in addition to the final plaque phenotype, in determining NP uptake, mice were injected with NPs at intermediate and fully developed stages of plaque growth. The kinetics of artery wall uptake were assessed in vivo using dynamic contrast-enhanced magnetic resonance imaging. At the intermediate stage, there was no difference in NP uptake between the two WSS conditions, although both were different from the control arteries. At the fully-developed stage, however, NP uptake was reduced in plaques induced by low WSS, but not multidirectional WSS. Histological evaluation of plaques induced by low WSS revealed a significant inverse correlation between the presence of smooth muscle cells and NP accumulation, particularly at the plaque-lumen interface, which did not exist with other constituents (lipid and collagen) and was not present in plaques induced by multidirectional WSS. These findings demonstrate that NP accumulation can be used to differentiate between unstable and stable murine atherosclerosis, but accumulation kinetics are not directly influenced by the WSS condition. This tool could be used as a diagnostic to evaluate the efficacy of experimental therapeutics for atherosclerosis

    The Transcriptional Regulator BpsR Controls the Growth of <i>Bordetella bronchiseptica</i> by Repressing Genes Involved in Nicotinic Acid Degradation

    Get PDF
    Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Epidural Hematoma Following Cervical Spine Surgery.

    Get PDF
    STUDY DESIGN: A multicentered retrospective case series. OBJECTIVE: To determine the incidence and circumstances surrounding the development of a symptomatic postoperative epidural hematoma in the cervical spine. METHODS: Patients who underwent cervical spine surgery between January 1, 2005, and December 31, 2011, at 23 institutions were reviewed, and all patients who developed an epidural hematoma were identified. RESULTS: A total of 16 582 cervical spine surgeries were identified, and 15 patients developed a postoperative epidural hematoma, for a total incidence of 0.090%. Substantial variation between institutions was noted, with 11 sites reporting no epidural hematomas, and 1 site reporting an incidence of 0.76%. All patients initially presented with a neurologic deficit. Nine patients had complete resolution of the neurologic deficit after hematoma evacuation; however 2 of the 3 patients (66%) who had a delay in the diagnosis of the epidural hematoma had residual neurologic deficits compared to only 4 of the 12 patients (33%) who had no delay in the diagnosis or treatment (P = .53). Additionally, the patients who experienced a postoperative epidural hematoma did not experience any significant improvement in health-related quality-of-life metrics as a result of the index procedure at final follow-up evaluation. CONCLUSION: This is the largest series to date to analyze the incidence of an epidural hematoma following cervical spine surgery, and this study suggest that an epidural hematoma occurs in approximately 1 out of 1000 cervical spine surgeries. Prompt diagnosis and treatment may improve the chance of making a complete neurologic recovery, but patients who develop this complication do not show improvements in the health-related quality-of-life measurements

    The Transcriptional Regulator BpsR Controls the Growth of <i>Bordetella bronchiseptica</i> by Repressing Genes Involved in Nicotinic Acid Degradation

    Get PDF
    Many of the pathogenic species of the genus Bordetella have an absolute requirement for nicotinic acid (NA) for laboratory growth. These Gram-negative bacteria also harbor a gene cluster homologous to the nic cluster of Pseudomonas putida which is involved in the aerobic degradation of NA and its transcriptional control. We report here that BpsR, a negative regulator of biofilm formation and Bps polysaccharide production, controls the growth of Bordetella bronchiseptica by repressing the expression of nic genes. The severe growth defect of the ΔbpsR strain in Stainer-Scholte medium was restored by supplementation with NA, which also functioned as an inducer of nic genes at low micromolar concentrations that are usually present in animals and humans. Purified BpsR protein bound to the nic promoter region, and its DNA binding activity was inhibited by 6-hydroxynicotinic acid (6-HNA), the first metabolite of the NA degradative pathway. Reporter assays with the isogenic mutant derivative of the wild-type (WT) strain harboring deletion in nicA, which encodes a putative nicotinic acid hydroxylase responsible for conversion of NA to 6-HNA, showed that 6-HNA is the actual inducer of the nic genes in the bacterial cell. Gene expression profiling further showed that BpsR dually activated and repressed the expression of genes associated with pathogenesis, transcriptional regulation, metabolism, and other cellular processes. We discuss the implications of these findings with respect to the selection of pyridines such as NA and quinolinic acid for optimum bacterial growth depending on the ecological niche.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Lessons Learned from the First 10 Years of the Oaks and Prairies Joint Venture’s Grassland Restoration Incentive Program (GRIP)

    Get PDF
    The Oaks and Prairies Joint Venture (OPJV) was formed in 2008 as a public-private partnership of agencies and organizations working across jurisdictional boundaries in portions of Texas and Oklahoma, USA. The OPJV’s major focus is reversing declines of bird populations by supporting strategic habitat conservation (biological planning, conservation design, conservation delivery, mission-based monitoring, and assumption-driven research) for northern bobwhite (Colinus virginianus), grasslandobligate species, and their respective habitats. Our objective for this paper is to document and share a decade of lessons learned in developing a partnership-based native grassland conservation program to meet grassland bird conservation targets. We share lessons learned about how to manage partnership-based, large-scale habitat incentive programs to better target project locations and habitat practice types. To establish initial shared purpose, OPJV partners drew from population and habitat objectives in various state, national, and international bird conservation plans, stepped down to ecoregion levels, to establish the OPJV Grassland Bird Conservation Business Plan. The plan has 4 strategies directly contributing to the achievement of OPJV grassland bird biological objectives that are directly supported by OPJV staff or resources (or both). The overall objective for 2015–2025 was 619,978 ha (1,532,000 acres) improved within 40 focal counties, representing 1/3 of all counties in the OPJV. Our main strategy was to provide financial incentives through the OPJV Grassland Restoration Incentive Program (GRIP) to private landowners for conducting beneficial grassland bird habitat management practices. Since inception in 2013, GRIP has treated over 44,515 ha (110,000 acres) on private lands in Texas and Oklahoma, with the goal of maintaining highquality grassland bird habitat on treated hectares for ≥5 years. In 2017, OPJV partners working with USDA Natural Resources Conservation Service, began a 5-year, $6.1 million partnership to provide additional technical and financial assistance to private landowners interested in grassland conservation through the Regional Conservation Partnership Program (RCPP). A project scoring system was designed to strategically encourage individual projects to include prescribed fire—one of the lowest cost practices per hectare—as a recurring practice to maintain program-achieved grassland improvements. Post-inception of the RCPP, the area treated with prescribed fire increased from approximately 809 ha (2,000 acres)/year to 3,237 ha (8,000 acres)/ year, while maintaining average annual hectares of all other beneficial practices. Beginning in 2013, bird point count surveys were conducted annually to monitor northern bobwhite and grassland bird populations, including a subset of points under the National Bobwhite Conservation Initiative (NBCI) Coordinated Implementation Plan. To date, nearly 25,000 individual point counts have been performed in Texas (n = 20,111) and Oklahoma (n = 4,558). Working together, OPJV partners have made significant progress toward meeting grassland bird habitat and population objectives, while tracking progress and improving methods. However, there is still considerable work ahead
    corecore