557 research outputs found

    Metal nanoring and tube formation on carbon nanotubes

    Get PDF
    The structural and electronic properties of aluminum covered single wall carbon nanotubes (SWNT) are studied from first-principles for a large number of coverage. Aluminum-aluminum interaction that is stronger than aluminum-tube interaction, prevents uniform metal coverage, and hence gives rise to the clustering. However, a stable aluminum ring and aluminum nanotube with well defined patterns can also form around the semiconducting SWNT and lead to metallization. The persistent current in the Al nanoring is discussed to show that a high magnetic field can be induced at the center of SWNT.Comment: Submitted to Physical Review

    Online Search Tool for Graphical Patterns in Electronic Band Structures

    Get PDF
    We present an online graphical pattern search tool for electronic band structure data contained within the Organic Materials Database (OMDB) available at https://omdb.diracmaterials.org/search/pattern. The tool is capable of finding user-specified graphical patterns in the collection of thousands of band structures from high-throughput ab initio calculations in the online regime. Using this tool, it only takes a few seconds to find an arbitrary graphical pattern within the ten electronic bands near the Fermi level for 26,739 organic crystals. The tool can be used to find realizations of functional materials characterized by a specific pattern in their electronic structure, for example, Dirac materials, characterized by a linear crossing of bands; topological insulators, characterized by a "Mexican hat" pattern or an effectively free electron gas, characterized by a parabolic dispersion. The source code of the developed tool is freely available at https://github.com/OrganicMaterialsDatabase/EBS-search and can be transferred to any other electronic band structure database. The approach allows for an automatic online analysis of a large collection of band structures where the amount of data makes its manual inspection impracticable.Comment: 8 pages, 8 figure

    Abrupt transition in quasiparticle dynamics at optimal doping in a cuprate superconductor system

    Full text link
    We report time-resolved measurements of the photoinduced change in reflectivity, Delta R, in the Bi2Sr2Ca(1-y)Dy(y)Cu2O(8+delta) (BSCCO) system of cuprate superconductors as a function of hole concentration. We find that the kinetics of quasiparticle decay and the sign of Delta R both change abruptly where the superconducting transition temperature Tc is maximal. These coincident changes suggest that a sharp transition in quasiparticle dynamics takes place precisely at optimal doping in the BSCCO system.Comment: 10 pages, 4 figure

    Absence of Magnetic Fluctuations in the Ferromagnetic/Topological Heterostructure EuS/Bi2_{2}Se3_{3}

    Full text link
    Heterostructures of topological insulators and ferromagnets offer new opportunities in spintronics and a route to novel anomalous Hall states. In one such structure, EuS/Bi2_{2}Se3_{3} a dramatic enhancement of the Curie temperature was recently observed. We performed Raman spectroscopy on a similar set of thin films to investigate the magnetic and lattice excitations. Interfacial strain was monitored through its effects on the Bi2_{2}Se3_{3} phonon modes while the magnetic system was probed through the EuS Raman mode. Despite its appearance in bare EuS, the heterostructures lack the corresponding EuS Raman signal. Through numerical calculations we rule out the possibility of Fabry-Perot interference suppressing the mode. We attribute the absence of a magnetic signal in EuS to a large charge transfer with the Bi2_{2}Se3_{3}. This could provide an additional pathway for manipulating the magnetic, optical, or electronic response of topological heterostructures.Comment: 6 pages, 3 figure

    Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3_3

    Get PDF
    The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-band-gap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3_3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device (SQUID) measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron-scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange

    A Benders Based Rolling Horizon Algorithm for a Dynamic Facility Location Problem

    Get PDF
    This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high quality feasible solutions in a much shorter computational time period than the stand-alone rolling horizon and accelerated Benders decomposition algorithms in the experimental range

    4D visualization of embryonic, structural crystallization by single-pulse microscopy

    Get PDF
    In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding

    Elastic scaling for data stream processing

    Get PDF
    Cataloged from PDF version of article.This article addresses the profitability problem associated with auto-parallelization of general-purpose distributed data stream processing applications. Auto-parallelization involves locating regions in the application's data flow graph that can be replicated at run-time to apply data partitioning, in order to achieve scale. In order to make auto-parallelization effective in practice, the profitability question needs to be answered: How many parallel channels provide the best throughput? The answer to this question changes depending on the workload dynamics and resource availability at run-time. In this article, we propose an elastic auto-parallelization solution that can dynamically adjust the number of channels used to achieve high throughput without unnecessarily wasting resources. Most importantly, our solution can handle partitioned stateful operators via run-time state migration, which is fully transparent to the application developers. We provide an implementation and evaluation of the system on an industrial-strength data stream processing platform to validate our solution

    Nonlinear optical probe of tunable surface electrons on a topological insulator

    Get PDF
    We use ultrafast laser pulses to experimentally demonstrate that the second-order optical response of bulk single crystals of the topological insulator Bi2_2Se3_3 is sensitive to its surface electrons. By performing surface doping dependence measurements as a function of photon polarization and sample orientation we show that second harmonic generation can simultaneously probe both the surface crystalline structure and the surface charge of Bi2_2Se3_3. Furthermore, we find that second harmonic generation using circularly polarized photons reveals the time-reversal symmetry properties of the system and is surprisingly robust against surface charging, which makes it a promising tool for spectroscopic studies of topological surfaces and buried interfaces

    A catalog of stream processing optimizations

    Get PDF
    Cataloged from PDF version of article.Various research communities have independently arrived at stream processing as a programming model for efficient and parallel computing. These communities include digital signal processing, databases, operating systems, and complex event processing. Since each community faces applications with challenging performance requirements, each of them has developed some of the same optimizations, but often with conflicting terminology and unstated assumptions. This article presents a survey of optimizations for stream processing. It is aimed both at users who need to understand and guide the system's optimizer and at implementers who need to make engineering tradeoffs. To consolidate terminology, this article is organized as a catalog, in a style similar to catalogs of design patterns or refactorings. To make assumptions explicit and help understand tradeoffs, each optimization is presented with its safety constraints (when does it preserve correctness?) and a profitability experiment (when does it improve performance?). We hope that this survey will help future streaming system builders to stand on the shoulders of giants from not just their own community. © 2014 ACM
    corecore