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Abstract

This study presents a well-known capacitated dynamic facility location problem
(DFLP) that satisfies the customer demand at a minimum cost by determining the
time period for opening, closing, or retaining an existing facility in a given location.
To solve this challenging NP-hard problem, this paper develops a unique hybrid
solution algorithm that combines a rolling horizon algorithm with an accelerated
Benders decomposition algorithm. Extensive computational experiments are performed
on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness
in solving the DFLP problem. Computational results indicate that the hybrid
Benders based rolling horizon algorithm consistently offers high quality feasible
solutions in a much shorter computational time period than the stand-alone rolling
horizon and accelerated Benders decomposition algorithms in the experimental range.

Keywords: Dynamic facility location problem, Benders decomposition algorithm,
rolling horizon heuristics, hybrid Benders based rolling horizon algorithm.

1 Introduction

The problem of locating a set of facilities to serve customers has received extensive
attention from researchers, managers, and practitioners due to the problem’s presence in
almost any supply chain. Therefore, various types of facility location problems have been
investigated in order to determine which facilities should be opened, closed or relocated to
serve select customers to minimize the total cost [1]. This paper examines a version of the
capacitated facility location problem (CFLP) in which facilities are assumed to provide
a finite amount of goods to meet time-dependent and deterministic customer demand
subject to time-dependent cost parameters in a multi-period planning horizon. This
problem is referred to as the capacitated Dynamic Facility Location Problem (DFLP)
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[2, 3]. In order to be able to respond to varying demand, the decision maker must
determine whether to open new facilities, keep the existing facilities open or closed, or
relocate them at any time period. In addition, the portion of customer demand needs
to be satisfied by each operating facility must be decided. The ultimate objective is to
minimize the total cost, which may include transportation and operating costs, facilities
opening and closing expenses, or other costs during all planning periods.

Arabani and Farahani [3] categorize the facility location problem into two main
groups based on whether the (re)location decisions vary by time. The static facility
location problem is referred to as single-period facility location problem in which the
facility location decisions and their parameters are independent of time. Since the
dynamic counterpart relaxes this assumption, dynamic model variants are more suitable
to reflect the impacts of vital factors that cannot be represented by static models, such as
incentives, energy prices, and market growth. Thus, dynamic model variants have many
application areas, including, but not limited to, combat logistics [4], electronics logistics
[5], and healthcare [6]. Current et al., [7] further apply another classification criteria
for the DFLP based on facility (re)location decisions. The explicitly DFLP controls
the opening and closing of a facility in a planning horizon, whereas the parameters may
change over time, but the (re)location decisions can be made only at the beginning of the
time horizon in the implicitly DFLP. Mirchandani and Odoni [8] study a version of the
implicitly DFLP in which the travel times are treated as random variables with known
discrete probability distributions. Drezner and Wesolowsky [9] demonstrate an optimal
solution method for the single facility location problem with a single (re)location option
with known demand of each serving point and a continuous linear function of time.
Farahani et al., [10] extend this work by including multiple relocation opportunities
and proposing an exact algorithm to make optimal relocation decisions. The implicitly
DFLP proposed by Drezner [11] develops a progressive p-median problem that does not
consider (re)location of the existing facilities but time periods are known when new
facilities are added to the network. The common property of these studies is, although
the demand is assumed to be dynamic and deterministic as a function of time, facilities
can only be opened at the beginning of the planning period.

This study limits attention to the explicitly DFLP that represents the impacts
of time-dependent parameters on time-dependent (re)location decisions. Even in this
subgroup of facility location problems, differences exist due to several assumptions, or
limitations, on the ways facility capacities can be dynamically adjusted to correspond to
the dynamic structure of demand. Thus, some researchers assume that once a facility is
located during a time period, it will remain open until the end of the planning horizon
[12]. Some others consider the case that opening new facilities or expanding current
capacities and closing existing ones can occur throughout the entire planning horizon
[13, 14, 15, 16]. Klose and Drexl [17] underline the exponentially increasing complexity
of the dynamic models over time. We also show that this problem is NP-hard. Despite
these facts, the DFLP has received extensive attention due to recent computational
advancements and in the problems applicability to real -life applications. Researchers
have presented numerous intelligent solution ways for different versions of this problem.
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Jena et al., [18] develop several valid inequalities to strengthen the DFLPs formulations
separately with decisions about capacity expansion or reduction and facility closing and
reopening. Scott [12] proposes a near optimal dynamic programming approach for the
DFLP in which multiple facilities can be located over equally distributed discrete time
periods. Roy and Erlenkotter [13] propose an exact dual ascent method embedded
in a branch-and-bound search for the uncapacitated DFLP that solves the problem
instances within one second and considers 25 facility and 50 customer locations, as
well as 10 time periods. Later on, Lim and Kim [14] consider the capacitated facilities
for the same problem and develop a Lagrangian relaxation based branch-and-bound
approach supported by Gomory cuts. Their technique finds good quality lower bounds
by employing a subgradient optimization method. Canel et al., [15] further extend this
work by considering multi-commodity items. In the first two stages of their algorithm,
a branch-and-bound procedure is adopted to make the facility opening and closing
decisions for each time period. At the final stage, the optimal configuration of facilities
is identified by dynamic programming. Melo et al., [16] introduce modular capacity
concept that enables facilities to exchange capacities. In addition, their capacitated
multi-commodity DFLP problem considers inventory activities and external supply of
goods. They investigate the complexity of each DFLP attribute by reporting the solution
quality of the mathematical models solved by a commercial branch-and-bound solver.
Jena et al., [19] study the multi-commodity DFLP with generalized modular capacities
in which facility closing, reopening, capacity reductions, and expansions are taken into
account. They present a Langrangian based algorithm that finds good quality solutions
within reasonable CPU times. Their technique consistently obtains solutions within 4%
from the best known lower bound, even for the problem instances the commercial solver
fails to report any solution due to memory limitation.

The multi-period international facility location problem (IFLP), introduced to the
literature by Canel and Khumawala [20], is a variant of the DFLP and seeks either to
minimize the total cost of dynamically opening facilities in domestic/foreign countries or
maximize the after-tax profits. Opening new facilities is the only facility related decision
in the IFLP. However, the optimal time of the location decisions, the total quantities
that need to be produced in each location and the shipment amounts from facilities
to customers are taken into account. Canel and Khumawala [20] further develop few
mixed integer programs (MIP) for both the capacitated and uncapacitated IFLP, and
by solving these problems in a commercial solver, they demonstrate how sensitive the
location decisions are for specific problem parameters, such as with/without demand
shortages. In a follow-up study, Canel and Khumawala [21]tackle the uncapacitated
IFLP with a branch-and-bound algorithm that is shown to be faster than the MIP
formulation by a factor of 50 on some problem instances. Finally, a heuristic proposed
by Canel and Khumawala [22] demonstrates significant computational time gains for a
similar IFLP problem.

Torres-Soto and Uster [2] study two versions of the DFLP. In the first variant, they
allow the facility opening and closing decisions throughout each period, whereas the
second variant assumes located facilities are open during the entire planning period.
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After presenting a MIP for each, they develop only the Benders decomposition algorithm
for the second problem and a Benders and a Lagrangian relaxation based algorithm for
the first problem. This study presents the same problem as the first DFLP variant in
[2]. No assumption is made on the demand structures, and the facility opening/closing
decisions can be made during any time period. The major contribution of this study is
two-fold. First, it proposes three main solution approaches: (i) a rolling horizon (RH)
heuristic, (ii) an accelerated Benders decomposition algorithm, and (iii) a hybrid (RH-
Benders) decomposition algorithm. Second, in addition to the largest set of problem
instances introduced by Torres-Soto and Uster [2], we introduce larger problem sets and
compare both their methods with our novel algorithms in terms of solution quality and
time.

The rest of this paper is organized as follows: Section 2 introduces the mathematical
model formulation of the DFLP and discusses some basic properties. The proposed
solution methods including rolling horizon approximation, accelerated, and hybrid Benders
decomposition algorithms are presented in Section 3. A comparative discussion of these
algorithms over some benchmark instances from the literature is demonstrated in Section
4. Finally, Section 5 concludes this paper by providing possible future research directions.

2 Problem Formulation

This section introduces the mathematical formulation of the [DFLP] that was proposed
by Torres-Soto and Uster [2]. Let G = (N ,A) be a complete directed graph where N
denotes the set of nodes and A denotes the set of arcs. Set N consists of set of customers
I and set of facilities J i.e., N = I ∪ J and set A represents the transportation arcs
between the facilities to customers. In [DFLP], we allow the facilities to open, close or
remain operational in a given time period to meet the customer demand. The ultimate
goal is to determine the optimum locations of capacitated facilities in each time period
that will satisfy the customer demand at a minimum possible total cost. We note that
when {Vjt}j∈J ,t∈T = {Ujt}j∈J ,t∈T = 0 and {qj}j∈J → +∞, the [DFLP] becomes the
classical uncapacitated fixed-charge location problem which is known to be an NP-hard
problem. Thus, [DFLP] is also an NP-hard problem.

The major cost components in [DFLP] are the cost related to opening, closing and
operating facilities and transportation costs across all time periods. The sets, input
parameters, and decision variables used in this study are summarized in Table 1.

The [DFLP] can be formulated as follows:

[DFLP] Minimize
∑
j∈J

∑
t∈T

(
ψjtYjt + ηjtUjt + µjtVjt +

∑
i∈I

cijtXijt

)

4



Table 1: Description of the sets and parameters
Symbol Description
Sets
I set of customer locations
J set of facility locations
T set of time periods
Parameters
ψjt fixed cost of having a facility open in location j of period t
ηjt fixed cost of opening a facility in location j at the beginning of period t
µjt fixed cost of closing a facility in location j at the beginning of period t
dij distance between customer i and facility j
α per unit distance per unit demand cost
bit demand of customer in location i during period t
cijt total cost of shipping demand from location i to j in period t; cijt = αbitdij
qj capacity available for a facility at location j
Decision Variables
Yjt 1 if a facility remain open in location j at the beginning of period t, 0 otherwise
Ujt 1 if a new facility is opened in location j at the beginning of period t, 0 otherwise
Vjt 1 if an existing facility is closed in location j at the beginning of period t, 0 otherwise
Xijt fraction of demand shipped from customer i to facility j in period t

Subject to

Yjt + Vjt = Yj,t−1 + Ujt ∀j ∈ J , t ∈ T (1)∑
j∈J

Xijt = 1 ∀i ∈ I, t ∈ T (2)

Xijt ≤ Yjt ∀i ∈ I, j ∈ J , t ∈ T (3)∑
i∈I

bitXijt ≤ qjYjt ∀j ∈ J , t ∈ T (4)

Yjt, Ujt, Vjt ∈ {0, 1} ∀i ∈ I, j ∈ J , t ∈ T (5)

Xijt ≥ 0 ∀i ∈ I, j ∈ J , t ∈ T (6)

The objective function minimizes the fixed cost for opening, operating and closing
a facility as well as transportation cost between facilities to customers. Constraints (1)
ensure the correct assignment of opening and closing the facilities. This set of constraints
can be viewed as network flow constraints which guarantee that for a given value j ∈ J ,
the polytope {(Yjt, Vjt, Ujt) ∈ [0, 1]3|T | : Yj,t−1 + Ujt = Yjt + Vjt, ∀t ∈ T } will provide
the integrality property. Therefore, the resulting mechanism will generate a tight linear
programming formulation for model [DFLP]. Constraints (2) ensure that the demand
must be met for each customer. On the other hand, constraints (3) guarantee that the
demand can only be fulfilled from open facilities. Constraints (4) make sure that that
no facility can supply more than its capacity. Finally, constraints (5) and (6) are the
integrality and non-negativity constraints, respectively.

5



3 Solution Methods

Since the [DFLP] is NP-hard, commercial solvers, such as CPLEX, cannot solve large-
scale instances of this problem. In this section we propose the following approaches
to solve [DFLP]: a rolling horizon heuristic, an accelerated Benders decomposition
algorithm, and a Benders-based rolling horizon algorithm. The aim is to produce a near
optimal solution for [DFLP] in a reasonable amount of time.

3.1 Rolling Horizon (RH) Algorithm

In this section, we introduce a heuristic approach proposed by Balasubramanian and
Grossman [23] and Kostina et al.[24]. This approach decomposes problem [DFLP]
into a series of small subproblems where each subproblem includes few consecutive time
periods which are drawn from the overall planning horizon. The algorithm terminates
when all the subproblems are investigated. The solution of this heuristic provides an
upper bound for problem [DFLP]. The overall algorithm is shown in Algorithm 1.

Let ts0 denote the starting time period of subproblem s. Let M s denote the number
of time periods comprised in subproblem s. We can set a fixed or variable size of M s

for each subproblem. Each approximate subproblem of the rolling horizon algorithm is
denoted by [DFLP(s)]. Now, each approximate subproblem is solved by setting the
variables as: (i) {Yjt}j∈J ,t∈T ∈ {0, 1}, {Vjt}j∈J ,t∈T ∈ {0, 1}, and {Ujt}j∈J ,t∈T ∈ {0, 1}
for ts0 ≤ t ≤ ts0 +M s and (ii) 0 ≤ Yjt ≤ 1, 0 ≤ Vjt ≤ 1, and 0 ≤ Ujt ≤ 1 for t > ts0 +M s.
Once a subproblem is solved, we fix the values of Yjt, Vjt, and Ujt for t < ts0 and update
the step size s. The process terminates when all the subproblems are solved. Figure
1 shows an example of using the rolling horizon approach to solve a three time period
problem.

Iteration 1:

Iteration 2:

Iteration 3:

t=0

t=0

t=0

Integer Relaxed

Integer

Integer

RelaxedFixed

Fixed

Approximate sub-problem 1

Approximate sub-problem 2

Approximate sub-problem 3

1

1

1

2

2

2

3

3

3

Figure 1: Application of a rolling horizon strategy for a three time period problem

3.2 Benders Decomposition Algorithm

Based on the structure of the model [DFLP], we develop an algorithm using the
Benders decomposition method [25], which is a well-known partitioning method to solve
mixed integer linear programs. Benders decomposition helps separating the original
problem into two subproblems: an integer master problem and a linear subproblem. In
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Algorithm 1: Rolling Horizon (RH) Heuristic

ts0 = 0, s← 1, M s, terminate ← false
while (terminate = false) do

Set:
Yjt ∈ {0, 1}, Vjt ∈ {0, 1} and Ujt ∈ {0, 1} for ts0 ≤ t ≤ ts0 +M s

0 ≤ Yjt ≤ 1, 0 ≤ Vjt ≤ 1 and 0 ≤ Ujt ≤ 1 for t > ts0 +M s

Solve the approximate sub-problem [DFLP(s)] using CPLEX
if(t0 > |T |) then

stop ← true
end if
s← s+ 1
Fixing the values of Yjt, Vjt and Ujt for t < ts0

end while

model [DFLP], for fixed values of binary location variables, the resulting model can
be decomposed into a linear multi-time period transportation problem. The underlying
Benders reformulation for model [DFLP] is given below:

Minimize
∑
j∈J

∑
t∈T

(
ψjtYjt + ηjtUjt + µjtVjt

)
+ [SP](X|Ŷ , Û , V̂ )

Subject to (1)-(6). [SP](X|Ŷ , Û , V̂ ) represents the Benders subproblem which is
described below.

For given values of the Y := {Yjt}j∈J ,t∈T , U := {Ujt}j∈J ,t∈T , and V := {Vjt}j∈J ,t∈T
variables satisfying the integrality constraints (5), the model [DFLP] reduces to the
following primal subproblem involving only the continuous variables X := {Xijt}i∈I,j∈J ,t∈T .

[SP] Minimize
∑
i∈I

∑
j∈J

∑
t∈T

cijtXijt

Subject to ∑
j∈J

Xijt = 1 ∀i ∈ I, t ∈ T (7)

Xijt ≤ Ŷjt ∀i ∈ I, j ∈ J , t ∈ T (8)∑
i∈I

bitXijt ≤ qj Ŷjt ∀j ∈ J , t ∈ T (9)

Xijt ≥ 0 ∀i ∈ I, j ∈ J , t ∈ T (10)
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Let λ = {λit | i ∈ I, t ∈ T }, δ = {δijt ≥ 0 | i ∈ I, j ∈ J , t ∈ T } and Let
γ = {γjt ≥ 0 | j ∈ J , t ∈ T } be the dual variables associated with constraints (7)-(9),
respectively. The dual of the primal subproblem, called the dual subproblem [DSP],
can be written as:

[DSP] Maximize
∑
i∈I

∑
t∈T

λit −
∑
i∈I

∑
j∈J

∑
t∈T

Ŷjtδijt −
∑
j∈J

∑
t∈T

qj Ŷjtγjt

Subject to

λit − δijt − bitγjt ≤ cijt ∀i ∈ I, j ∈ J , t ∈ T (11)

δijt, γjt ≥ 0 ∀i ∈ I, j ∈ J , t ∈ T (12)

λit ∈ R ∀i ∈ I, t ∈ T (13)

Introducing an extra variable θ, the underlying Benders reformulation can be equivalently
written as the following Benders master problem [MP]:

[MP] Minimize
∑
j∈J

∑
t∈T

(
ψjtYjt + ηjtUjt + µjtVjt

)
+ θ

Subject to

Yjt + Vjt = Yj,t−1 + Ujt ∀j ∈ J , t ∈ T (14)

θ ≥
∑
i∈I

∑
t∈T

λit −
∑
i∈I

∑
j∈J

∑
t∈T

δijtYjt −
∑
j∈J

∑
t∈T

qjγjtYjt ∀(λ, δ, γ) ∈ PD(15)

∑
j∈J

qjYjt ≥
∑
i∈I

bit ∀t ∈ T (16)

Yjt, Ujt, Vjt ∈ {0, 1} ∀i ∈ I, j ∈ J , t ∈ T(17)

θ ≥ 0 (18)

In [MP], constraints (15) are referred to as optimality cut constraints where PD is
the set of the extreme points in the feasible region of [DSP]. Constrains (16) are served
as surrogate constrains which are added to the master problem to ensure that enough
capacity plants are opened for [DSP] to have a feasible solution. The overall Benders
decomposition algorithm is described as follows:

Let UBn and LBn denote an upper and lower bound of the original problem [DFLP]
at iteration n. In each iteration, the solution of the master problem (znMP ) provides a
lower bound for the original problem. We now fix the values of the binary variables
{Ŷ n

jt}j∈J ,t∈T , {Ûn
jt}j∈J ,t∈T , and {V̂ n

jt}j∈J ,t∈T , obtained from the master problem [MP],
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and use these values to solve the dual subproblem [DSP]. The solution of the dual
subproblem is denoted by znSUB. In iteration n, solving the dual subproblem [DSP]
generates a new extreme point p ∈ PD which is added to the master problem [MP]

by updating set PD as Pn
D = Pn−1

D

⋃
p. Let znMAS =

∑
j∈J

∑
t∈T

(
ψjtYjt + ηjtUjt +

µjtVjt

)
. Therefore, the upper bound on the optimal solution value of the [DFLP] can

be determined as: UBn = znMAS + znSUB. As in Geoffrion and Graves [26], at the end
of each iteration, we check if the gap between the upper bound and lower bound falls
below a threshold value ε. If this happens, we terminate the algorithm; otherwise, PD
is updated by adding an optimality cut in the form (15) in [MP]. A pseudo-code of the
basic Benders decomposition algorithm is provided in Algorithm 2.

Algorithm 2: Benders decomposition

UBn ← +∞, LBn ← −∞, n← 1, ε, PD ← 0
terminate ← false
while (terminate = false) do

Solve [MP] to obtain {Y n
jt}j∈J ,t∈T , {Un

jt}j∈J ,t∈T , {V n
jt}j∈J ,t∈T , znMP , znMAS

if (znMP > LBn) then
LBn ← znMP

end if
Set:

Ŷ n
jt = Y n

jt ; ∀j ∈ J , t ∈ T
Ûn
jt = Un

jt; ∀j ∈ J , t ∈ T
V̂ n
jt = V n

jt ; ∀j ∈ J , t ∈ T
Solve [DSP] to obtain (λit, δijt, γjt) ∈ PD and znSUB

if (znSUB + znMAS < UBn) then
UBn ← znSUB + znMAS

end if
if ((UBn − LBn)/UBn ≤ ε) then

terminate ← true
else

Pn+1
D = Pn

D ∪ {λit, δijt, γjt}
end if
n← n+ 1

end while

The only difference between the Benders decomposition algorithm proposed by Torres-
Soto and Uster [2] and ours is that we have added integer cuts (see Section 3.3.4) and
set branching priorities (see Section 3.3.5) in addition to the enhancement strategies
proposed by Torres-Soto and Uster [2].
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3.3 Accelerating Benders Decomposition Algorithm

This section presents some accelerating techniques to improve the computational performance
of the basic Benders decomposition algorithm in solving model [DFLP].

3.3.1 Multi-cuts:

We observe that [DSP] can be further decomposed into |T | independent dual subproblems,
one for each time period t ∈ T . Therefore, instead of adding one optimality cut we now
add |T | number of cuts in each iteration of the Benders master problem [MP]. The
information obtained from solving |T | independent dual subproblem is now used to
generate cut (15). Let PD be the set of extreme points of the dual polyhedron PDt

associated with subproblem t. We thus obtain the following revised master problem
[MMP]:

[MMP] Minimize
∑
j∈J

∑
t∈T

(
ψjtYjt + ηjtUjt + µjtVjt

)
+
∑
t∈T

θt

Subject to: (14), (16), (17), and

θt ≥
∑
i∈I

λit −
∑
i∈I

∑
j∈J

δijtYjt −
∑
j∈J

qjγjtYjt ∀t ∈ T , (λ, δ, γ) ∈ PDt (19)

Note that in formulation [MMP] we add multiple terms θt instead of single θ
presented in equation (15). Additionally, notice that we now have the cuts defined
for each time period t ∈ T , with the dual information used to generate the cuts being
indexed accordingly. This approach is expected to take fewer number of iterations to
reach the optimality gap; however, each iteration is likely to take longer time to solve
compared to [MP] [27].

3.3.2 Pareto-optimality cuts:

One way to improve the convergence of the Benders decomposition algorithm is to
construct stronger, non-dominated cuts, commonly named as pareto-optimality cuts [28].
From the context of our problem, we can say that a pareto-optimal cut is generated when
the cut produced from an extreme point (λ1, δ1, γ1) dominates the cut produced from
another extreme point (λ2, δ2, γ2), i.e.,∑
i∈I

∑
t∈T

λ1it −
∑
i∈I

∑
j∈J

∑
t∈T

Yjtδ
1
ijt −

∑
j∈J

∑
t∈T

qjYjtγ
1
jt ≥

∑
i∈I

∑
t∈T

λ2it −
∑
i∈I

∑
j∈J

∑
t∈T

Yjtδ
2
ijt −

∑
j∈J

∑
t∈T

qjYjtγ
2
jt

with strict inequality for at least one point {Yjt}j∈J ,t∈T ∈ Y. In this study, we have used
the following subproblem independent pareto-optimal cuts proposed by Papadakos [29].
We refer to this subproblem as [DSP(MMW)]. Let YLP be the polyhedron defined
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by (14), (16), and 0 ≤ {Yjt}∀j∈J ,t∈T ≤ 1. Let ri(YLP ) denote the relative interior of
YLP . A pareto-optimal cut can be obtained by solving the following subproblem where
Y 0
jt ∈ ri(YLP ); ∀j ∈ J , t ∈ T .

[DSP(MMW)] Maximize
∑
i∈I

∑
t∈T

λit −
∑
i∈I

∑
j∈J

∑
t∈T

Y 0
jtδijt −

∑
j∈J

∑
t∈T

qjY
0
jtγjt

Subject to

λit − δijt − bitγjt ≤ cijt ∀i ∈ I, j ∈ J , t ∈ T (20)

δijt, γjt ≥ 0 ∀i ∈ I, j ∈ J , t ∈ T (21)

λit ∈ R ∀i ∈ I, t ∈ T (22)

In this formulation Y 0
jt are core points which can be updated as follows: Y 0

jt = τY 0
jt +

(1− τ)Ŷjt; ∀j ∈ J , t ∈ T . {Ŷjt}j∈J ,t∈T is obtained from solution of the current master
problem. Experimental results indicate that setting τ = 0.5 provides the best empirical
results. We note that the auxiliary subproblem [DSP(MMW)] is independent from
the solutions of the dual subproblem [DSP] which helps the Benders master problem to
be one step closer to the optimal solution from the very first iteration [29].

3.3.3 Knapsack Inequalities:

Santoso et al. [30] show that when a good upper bound is available from the Benders
decomposition algorithm, then adding knapsack inequalities of the following forms will
help the commercial solvers such as CPLEX to derive a varieties of valid inequalities
from it. This will speed up the branch and bound process of the solver and eventually
will expedite the convergence of the Benders decomposition algorithm. Let UBn and
LBn denote the best upper and lower bound obtained so far. Therefore, the following
valid inequalities are added to the master problem [MP] in iteration n+ 1:

LBn ≤
∑
j∈J

∑
t∈T

(
ψjtYjt + ηjtUjt + µjtVjt

)
+ θ (23)

UBn ≥
∑
i∈I

∑
j∈J

∑
t∈T

(
ψjt − δijt − qjγjt

)
Yjt +

∑
j∈J

∑
t∈T

ηjtUjt +
∑
j∈J

∑
t∈T

µjtVjt +
∑
i∈I

∑
t∈T

λit

(24)

3.3.4 Integer Cuts:

In the earlier stage of the the Benders decomposition algorithm, the master problem
often produces same values for some of the integer variables over the iterations. This
does not help the convergence of the Benders decomposition algorithm and at the same
time increases the running time of the overall algorithm. To reduce the search space and
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expedite the running time of the overall algorithm, the following integer cut is added
in each iteration of the Benders master problem [31]. Let Yn

1 = {(j, t)|Ŷ n
jt = 1,∀j ∈

J , t ∈ T } where Ŷ n
jt for j ∈ J , t ∈ T be the solutions obtained from solving the master

problem in iteration n. We add the following constraints to the master problem [MP]
in iteration n+ 1: ∑

(j,t)∈Yn
1

(1− Yjt) +
∑

(j,t)/∈Yn
1

Yjt ≥ 1 (25)

3.3.5 Heuristics Improvements:

Obtaining Good Solutions before Convergence: In the initial stage of the Benders
decomposition algorithm, the master problem typically produces low-quality solutions.
The process continues until sufficient information from subproblem is passed to the
master problem via constraints (15). Additionally, the master problem is an integer
problem for which generating an optimal solution even for a moderate size network
problem, is a challenging task. In order to alleviate this problem, we initially set a large
optimality gap which is gradually reduced as the algorithm progresses. For instance,
initially an optimality gap is set at 5%, which is reduced to 1% when the gap between
the upper and lower bound of the Benders decomposition algorithm falls below 10%.

Setting Branching Priorities: We set branching priorities explicitly to help
CPLEX decides the order in which the solver branch on variables. Our numerical
analysis indicates that branching on variables Yjt first, followed by Ujt and Vjt save
some computational time in solving the Benders master problem [MP].

3.4 The Hybrid Solution Algorithm

This hybrid solution algorithm ([RH-Benders]) combines rolling horizon algorithm
with the accelerated Benders decomposition algorithm. In this approach, the accelerated
Benders decomposition algorithm is used to solve the subproblems obtained by the
rolling horizon algorithm. This hybrid solution algorithm is particularly useful when
the network size is sufficiently large (i.e., a large set of |J | and |T |) and CPLEX
finds it difficult to solve the first few subproblems of the rolling horizon algorithm.
Our computational results indicate that as soon as the first few subproblems of the
rolling horizon algorithm are solved (sn), the remaining subproblems can be tackled
fairly by CPLEX in a reasonable amount of time. This motivates us to apply the
accelerated Benders decomposition algorithm (discussed in Section 3.3) to solve the first
few subproblems (i.e.,sn = 3) of the rolling horizon algorithm (s ≤ sn), and solve the
remaining subproblems (s > sn) using CPLEX. The algorithm terminates when all the
subproblems are investigated. Note that, the aim of this approach is to provide a high
quality feasible solution for model [DFLP] in a reasonable amount of time. The overall
algorithm is shown in Algorithm 3.
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Algorithm 3: The Hybrid Solution Algorithm (RH-Benders)

ts0 = 0, s← 1, M s, sn ← 3, terminate ← false
while (terminate = false) do

if (s ≤ sn) then
Set:
Yjt ∈ {0, 1}, Vjt ∈ {0, 1} and Ujt ∈ {0, 1} for ts0 ≤ t ≤ ts0 +M s

0 ≤ Yjt ≤ 1, 0 ≤ Vjt ≤ 1 and 0 ≤ Ujt ≤ 1 for t > ts0 +M s

Use Algorithm 2 to solve the approximate sub-problem [DFLP(s)]
end if
if (s > sn) then

Set:
Yjt ∈ {0, 1}, Vjt ∈ {0, 1} and Ujt ∈ {0, 1} for ts0 ≤ t ≤ ts0 +M s

0 ≤ Yjt ≤ 1, 0 ≤ Vjt ≤ 1 and 0 ≤ Ujt ≤ 1 for t > ts0 +M s

Use CPLEX to solve the approximate sub-problem [DFLP(s)]
end if

if(t0 > |T |) then
stop ← true

end if
s← s+ 1
Fixing the values of Yjt, Vjt and Ujt for t < ts0

end while

4 Computational Experiments

This section presents a comprehensive analysis of the solution algorithms introduced in
the previous section for the DFLP. All the algorithms, including the one developed by
Torres-Soto and Uster [2], are coded in GAMS 24.2.1 [32] and executed on a desktop
computer with Intel Core i7 3.50 GHz processor and 32.0 GB RAM. The optimization
solver used is ILOG CPLEX 12.6.

Table 2 summarizes the characteristics of the input parameters used in the problem
instances, referred to as cases. The problem instances used in the computational experiments
are generated by following the same procedure as described in Torres-Soto and Uster [2].
Accordingly, the total demand of customers during the time horizon follows one of the
three patterns: (i) increasing, (ii) decreasing, or (iii) steady. They use four values for
the number of customer and facility locations |I| = |J | = {50, 100, 150, 200}, and two
values for the number of periods in the planning horizon, |T | = {5, 10}. We add three
different values to the list of values for the number of customer and facility locations
(|I| = |J | = {50, 100, 150, 200} ∪ {250, 300, 350}) to create more challenging problem
instances. The corresponding number of binary and continuous decision variables in each
problem instance are also given in Table 2. The cost parameters considered in this model
are assumed to be computed in terms of their present values. The fixed cost of operating
a facility (ψjt) is generated randomly from a discrete uniform distribution U [u, u], where,
0 < u < u. Let θ = (u + u)/2. The fixed cost of opening a facility (ηjt) is generated
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randomly from a uniform distribution U [0.75θ, 0.85θ], like the fixed cost of closing a
facility (µjt) is generated randomly from a uniform distribution U [0.10θ, 0.15θ]. We
assume that no facilities operate at the beginning of the first period i.e., Yj0 = 0;∀j ∈ J .
The capacity of the facilities (qj) at location j ∈ J , the demand of customer (bit) in
location i ∈ I, and the distance (dij) between customer i ∈ I and facility j ∈ J
can be obtained from http://ise.tamu.edu/LNS/dcflp-data.html. For all problem
instances, α = 1.

Table 2: Problem size of the test instances
Case |I| |J | |T | Binary Continuous No. of

Variables Variables Constraints
1 50 50 5 750 12,500 13,251
2 50 50 10 1,500 25,000 26,501
3 100 100 5 1,500 50,000 51,501
4 100 100 10 3,000 100,000 103,001
5 150 150 5 2,250 112,500 114,751
6 150 150 10 4,500 225,000 229,501
7 200 200 5 3,000 200,000 203,001
8 200 200 10 6,000 400,000 406,001
9 250 250 5 3,750 312,500 316,251
10 250 250 10 7,500 625,000 632,501
11 300 300 5 4,500 450,000 454,501
12 300 300 10 9,000 900,000 909,001
13 350 350 5 5,250 612,500 617,751
14 350 350 10 10,500 1,225,000 1,235,501

Tables 3, 4, and 5 assess the performance of the three proposed algorithms for each
demand pattern discussed above. In addition, the performance of CPLEX and the
Benders algorithm proposed in Torres-Soto and Uster [2] is reported. For each pattern,
results include the percent optimality gap, the solution time in seconds, and the number
of iterations applied to the solution techniques. We use one of the following criteria
to terminate the algorithms: (i) the optimality gap between the upper (UB) and lower
bound (LB) falls below a threshold value ε, i.e., ε = |UB − LB|/UB = 0.001; (ii) the
maximum time limit is reached (10,800 CPU seconds); or (iii) the maximum number of
iteration is reached (Iter = 500).

From the results presented in Tables 3, 4, and 5, both the three algorithms introduced
here and the Benders decomposition algorithm in Torres-Soto and Uster [2] perform
better than the branch-and-cut procedure of CPLEX in terms of solution time and
percent optimality gap. CPLEX cannot terminate with a solution within the 1% optimality
gap for the problem instances with |I| = |J | > 50 in 10,800 seconds time limit. The
only exception is case 3 in Table 4. Even for the smaller cases 1 and 2, CPLEX is
outperformed, in terms of solution time, by the solution methods presented here and
the Benders decomposition algorithm in Torres-Soto and Uster [2]. The accelerated
Benders algorithm developed in this study and its counterpart in Torres-Soto and Uster
[2] terminate with a near optimal solution (< 0.1%) for the first nine problem cases.
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Table 3: Computation results for [DFLP] under steady demand
CPLEX Torres-Soto & Uster [2] Accelerated Benders RH Algorithm RH-Benders

Gap CPU Gap CPU Iter Gap CPU Iter Gap CPU Gap CPU
Case (%) (sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec)

1 0.09 1,031.2 0.08 13.8 14 0.09 10.5 10 0.09 31.3 0.12 7.3
2 0.09 7,203.3 0.09 19.6 12 0.09 23.9 12 0.14 484.1 0.16 12.9
3 1.31 10,800.0 0.08 123.6 28 0.07 109.5 18 0.26 1,057.7 0.21 82.1
4 3.33 10,800.0 0.08 289.2 23 0.09 231.4 16 1.98 2,432.8 0.11 122.6
5 1.72 10,800.0 0.09 414.4 25 0.08 311.8 21 1.05 4,524.8 0.19 110.9
6 2.96 10,800.0 0.07 794.4 26 0.08 427.4 20 1.06 5,527.1 0.20 206.7
7 4.76 10,800.0 0.09 1,423.8 32 0.07 945.3 25 2.14 9,686.6 0.18 573.4
8 n.a.a 10,800.0 0.09 1,966.7 34 0.08 1,404.4 21 8.78 10,742.1 0.17 701.7
9 n.a.a 10,800.0 0.08 5,546.8 76 0.09 4,881.7 69 6.64 10,800.0 0.21 1,913.5
10 n.a.a 10,800.0 4.48 10,800.0 110 1.69 10,800.0 102 12.29 10,800.0 0.34 3,104.8
11 n.a.a 10,800.0 1.21 10,800.0 144 0.84 10,800.0 134 8.89 10,800.0 0.26 2,411.7
12 n.a.a 10,800.0 11.74 10,800.0 94 4.52 10,800.0 88 n.a.a 10,800.0 0.31 3,577.8
13 n.a.a 10,800.0 5.22 10,800.0 89 1.51 10,800.0 77 9.29 10,800.0 0.61 3,004.1
14 n.a.a 10,800.0 16.64 10,800.0 62 6.21 10,800.0 54 n.a.a 10,800.0 0.55 4,112.8

aunable to find an integer feasible solution within the time limit

On the other hand, for the same first nine problem cases, the rolling horizon Benders
[RH-Benders] algorithm obtains solutions faster than these two Benders variants with
slightly worse optimality gaps (≤ 0.34%). The rolling horizon heuristic [RH Algorithm]
has inferior solution quality and time compared to the Benders algorithms. Yet, for all
of the problem cases, [RH Algorithm] provides better solutions than CPLEX in terms
of both average optimality gap and solution time.

Table 4: Computation results for [DFLP] under increasing demand
CPLEX Torres-Soto & Uster [2] Accelerated Benders RH Algorithm RH-Benders

Case Gap CPU Gap CPU Iter Gap CPU Iter Gap CPU Gap CPU
(%) (sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec)

1 0.09 620.9 0.06 19.7 11 0.08 20.8 10 0.27 247.1 0.14 22.1
2 0.01 8,552.5 0.09 26.4 14 0.07 25.9 10 0.18 1,221.8 0.16 26.2
3 0.09 3,936.6 0.07 301.7 32 0.04 279.5 24 0.12 1,427.6 0.17 179.4
4 1.67 10,800.0 0.09 394.2 34 0.07 351.7 28 0.72 7,598.7 0.20 201.5
5 1.00 10,800.0 0.08 822.6 31 0.08 733.3 26 0.51 7,516.5 0.13 312.6
6 2.61 10,800.0 0.09 1,101.9 34 0.09 916.4 28 1.81 7,622.8 0.22 564.3
7 0.73 10,800.0 0.08 1,962.1 47 0.09 1,729.3 37 0.33 8,035.9 0.24 774.8
8 88.16 10,800.0 0.08 2,338.2 44 0.08 2,091.7 35 14.69 10,689.2 0.21 1,089.2
9 n.a.a 10,800.0 0.09 8,229.6 121 0.09 6,994.1 113 8.86 10,800.0 0.32 1,820.4
10 n.a.a 10,800.0 3.38 10,800.0 114 1.15 10,800.0 99 16.47 10,800.0 0.38 2,934.5
11 n.a.a 10,800.0 0.94 10,800.0 147 0.36 10,800.0 132 11.54 10,800.0 0.36 2,422.1
12 n.a.a 10,800.0 7.93 10,800.0 97 3.34 10,800.0 83 17.78 10,800.0 0.44 3,689.7
13 n.a.a 10,800.0 4.62 10,800.0 85 2.26 10,800.0 81 9.17 10,800.0 0.84 3,157.4
14 n.a.a 10,800.0 14.25 10,800.0 61 8.11 10,800.0 59 n.a.a 10,800.0 0.67 4,058.5

aunable to find an integer feasible solution within the time limit

For the larger problem cases (10-14) and all demand patterns in Tables 3, 4, and
5, CPLEX is unable to report an integer feasible solution within the time limit. For
the same set of problem cases, the rolling horizon heuristic [RH Algorithm], the
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accelerated Benders algorithm and its counterpart in Torres-Soto and Uster [2] reach
the time limit before obtaining an ε-optimal solution. Among them, the accelerated
Benders achieves the smallest optimality gap for each problem case (10-14) with fewer
number of iterations. On the other hand, in terms of solution time, the hybrid Benders
decomposition algorithm outperforms all other solution techniques by a factor of two in
every problem case. In return, the worst case optimality gap of the hybrid algorithm is
only 0.72% across all problem cases.

Table 5: Computation results for [DFLP] under decreasing demand
CPLEX Torres-Soto & Uster [2] Accelerated Benders RH Algorithm RH-Benders

Case Gap CPU Gap CPU Iter Gap CPU Iter Gap CPU Gap CPU
(%) (sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec)

1 0.09 925.4 0.08 24.2 19 0.09 16.7 15 0.27 179.7 0.24 18.8
2 0.09 1,880.2 0.09 26.4 17 0.08 17.4 11 0.22 432.4 0.23 22.3
3 1.64 10,800.0 0.09 144.8 28 0.06 112.7 20 0.19 996.2 0.21 74.6
4 2.61 10,800.0 0.06 151.7 29 0.09 120.9 18 0.20 1,109.4 0.17 89.7
5 2.89 10,800.0 0.08 722.6 33 0.09 609.7 26 0.88 7,379.5 0.17 279.5
6 4.00 10,800.0 0.07 765.8 31 0.08 710.6 25 1.55 7,422.1 0.34 322.1
7 3.41 10,800.0 0.08 1,421.8 35 0.04 1,173.6 26 2.01 7,826.8 0.31 576.8
8 3.76 10,800.0 0.09 2,438.7 42 0.07 1,967.1 33 2.55 8,312.1 0.28 962.1
9 26.67 10,800.0 0.09 7,142.4 84 0.09 6,127.5 71 4.16 10,800.0 0.32 1,801.5
10 n.a.a 10,800.0 5.12 10,800.0 116 2.27 10,800.0 103 8.66 10,800.0 0.40 3,172.7
11 n.a.a 10,800.0 1.22 10,800.0 142 0.83 10,800.0 129 5.84 10,800.0 0.31 2,600.2
12 n.a.a 10,800.0 8.43 10,800.0 101 3.19 10,800.0 84 15.26 10,800.0 0.48 3,477.3
13 n.a.a 10,800.0 7.57 10,800.0 88 2.21 10,800.0 76 7.24 10,800.0 0.65 3,215.6
14 n.a.a 10,800.0 17.44 10,800.0 62 9.16 10,800.0 57 n.a.a 10,800.0 0.72 3,882.5

aunable to find an integer feasible solution within the time limit

5 Conclusions

This paper presents two novel Benders decomposition algorithms and one rolling horizon
heuristics to efficiently solve the DFLP in which facility (re)location decisions are made
for each time period across the entire planning horizon. In order to assess the performance
of these techniques, the solution quality and time of the algorithms developed here are
compared with both CPLEX and the Benders algorithm developed by Torres-Soto and
Uster [2] over their expanded test cases. Careful analysis of the results shows that
both the accelerated Benders algorithm presented in this paper and its counterpart in
Torres-Soto and Uster [2] provide better quality solutions than the other algorithms for
the smaller problem cases (1-9). However, our hybrid Benders algorithm [RH-Benders]
obtains near optimal solutions for all problem cases in much shorter computational time.
Moreover, the rolling horizon algorithm developed in this paper is demonstrated to be
more efficient and effective than CPLEX for almost every problem case, although it is
outperformed by all three Benders algorithms in terms of average solution time and
optimality gap.

Considering the computational gains via our hybrid Benders algorithm, further research
should be directed toward the development of another hybrid Benders algorithm for
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the DFLP that considers multi-commodities and stochastic demand arrivals. Multi-
echelon problems that include inventory control policies can also be embedded into this
future application. Another extension of this work is to model and solve a dynamic
facility location problem that accounts for customer preferences, market movements,
competition, and other dynamics of supply chain management.
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