142 research outputs found

    EBMT prospective observational study on allogeneic hematopoietic stem cell transplantation in T-prolymphocytic leukemia (T-PLL)

    Get PDF
    Preliminary data suggest that allogeneic stem cell transplantation (allo-SCT) may be effective in T-prolymphocytic leukemia (T-PLL). The purpose of the present observational study was to assess the outcome of allo-SCT in patients aged 65 years or younger with a centrally confirmed diagnosis of T-PLL. Patients were consecutively registered with the EBMT at the time of transplantation and followed by routine EBMT monitoring but with an extended dataset. Between 2007 and 2012, 37 evaluable patients (median age 56 years) were accrued. Pre-treatment contained alemtuzumab in 95% of patients. Sixty-two percent were in complete remission (CR) at the time of allo-SCT. Conditioning contained total body irradiation with 6 Gy or more (TBI6) in 30% of patients. With a median follow-up of 50 months, the 4-year non-relapse mortality, relapse incidence, progression-free (PFS) and overall survival were 32, 38, 30 and 42%, respectively. By univariate analysis, TBI6 in the conditioning was the only significant predictor for a low relapse risk, and an interval between diagnosis and allo-SCT of more than 12 months was associated with a lower NRM. This study confirms for the first time prospectively that allo-SCT can provide long-term disease control in a sizable albeit limited proportion of patients with T-PLL.Peer reviewe

    A Nationwide Study of GATA2 Deficiency in Norway-the Majority of Patients Have Undergone Allo-HSCT

    Get PDF
    PurposeGATA2 deficiency is a rare primary immunodeficiency that has become increasingly recognized due to improved molecular diagnostics and clinical awareness. The only cure for GATA2 deficiency is allogeneic hematopoietic stem cell transplantation (allo-HSCT). The inconsistency of genotype-phenotype correlations makes the decision regarding "who and when" to transplant challenging. Despite considerable morbidity and mortality, the reported proportion of patients with GATA2 deficiency that has undergone allo-HSCT is low (~ 35%). The purpose of this study was to explore if detailed clinical, genetic, and bone marrow characteristics could predict end-point outcome, i.e., death and allo-HSCT.MethodsAll medical genetics departments in Norway were contacted to identify GATA2 deficient individuals. Clinical information, genetic variants, treatment, and outcome were subsequently retrieved from the patients' medical records.ResultsBetween 2013 and 2020, we identified 10 index cases or probands, four additional symptomatic patients, and no asymptomatic patients with germline GATA2 variants. These patients had a diverse clinical phenotype dominated by cytopenia (13/14), myeloid neoplasia (10/14), warts (8/14), and hearing loss (7/14). No valid genotype-phenotype correlations were found in our data set, and the phenotypes varied also within families. We found that 11/14 patients (79%), with known GATA2 deficiency, had already undergone allo-HSCT. In addition, one patient is awaiting allo-HSCT. The indications to perform allo-HSCT were myeloid neoplasia, disseminated viral infection, severe obliterating bronchiolitis, and/or HPV-associated in situ carcinoma. Two patients died, 8 months and 7 years after allo-HSCT, respectively.ConclusionOur main conclusion is that the majority of patients with symptomatic GATA2 deficiency will need allo-HSCT, and a close surveillance of these patients is important to find the "optimal window" for allo-HSCT. We advocate a more offensive approach to allo-HSCT than previously described

    Characterization of a Clp Protease Gene Regulator and the Reaeration Response in Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis (MTB) enters a non-replicating state when exposed to low oxygen tension, a condition the bacillus encounters in granulomas during infection. Determining how mycobacteria enter and maintain this state is a major focus of research. However, from a public health standpoint the importance of latent TB is its ability to reactivate. The mechanism by which mycobacteria return to a replicating state upon re-exposure to favorable conditions is not understood. In this study, we utilized reaeration from a defined hypoxia model to characterize the adaptive response of MTB following a return to favorable growth conditions. Global transcriptional analysis identified the ∼100 gene Reaeration Response, induced relative to both log-phase and hypoxic MTB. This response includes chaperones and proteases, as well as the transcription factor Rv2745c, which we characterize as a Clp protease gene regulator (ClgR) orthologue. During reaeration, genes repressed during hypoxia are also upregulated in a wave of transcription that includes genes crucial to transcription, translation and oxidative phosphorylation and culminates in bacterial replication. In sum, this study defines a new transcriptional response of MTB with potential relevance to disease, and implicates ClgR as a regulator involved in resumption of replication following hypoxia
    corecore