3,254 research outputs found
Phenotypic plasticity for life-history traits in Drosophila melanogaster. III. Effect of the environment on genetic parameters
We estimated genetic and environmental variance components for developmental time and dry weight at eclosion in Drosophila melanogaster raised in ten different environments (all combinations of 22, 25 and 28°C and 0·5, 1 and 4% yeast concentration, and 0·25% yeast at 25°C). We used six homozygous lines derived from a natural population for complete diallel crosses in each environment. Additive genetic variances were consistently low for both traits (h2 around 10%). The additive genetic variance of developmental time was larger at lower yeast concentrations, but the heritability did not increase because other components were also larger. The additive genetic effects of the six parental lines changed ranks across environments, suggesting a mechanism for the maintenance of genetic variation in heterogenous environments. The variance due to non-directional dominance was small in most environments. However, there was directional dominance in the form of inbreeding depression for both traits. It was pronounced at high yeast levels and temperatures but disappeared when yeast or temperature were decreased. This meant that the heterozygous flies were more sensitive to environmental differences than homozygous flies. Because dominance effects are not heritable, this suggests that the evolution of plasticity can be constrained when dominance effects are important as a mechanism for plasticit
Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies
Dynamical models for 17 Coma early-type galaxies are presented. The galaxy
sample consists of flattened, rotating as well as non-rotating early-types
including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56.
Kinematical long-slit observations cover at least the major and minor axis and
extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to
derive stellar mass-to-light ratios and dark halo parameters. In every galaxy
models with a dark matter halo match the data better than models without. The
statistical significance is over 95 percent for 8 galaxies, around 90 percent
for 5 galaxies and for four galaxies it is not significant. For the highly
significant cases systematic deviations between observed and modelled
kinematics are clearly seen; for the remaining galaxies differences are more
statistical in nature. Best-fit models contain 10-50 percent dark matter inside
the half-light radius. The central dark matter density is at least one order of
magnitude lower than the luminous mass density. The central phase-space density
of dark matter is often orders of magnitude lower than in the luminous
component, especially when the halo core radius is large. The orbital system of
the stars along the major-axis is slightly dominated by radial motions. Some
galaxies show tangential anisotropy along the minor-axis, which is correlated
with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between
data-fit and regularisation constraints does not change the reconstructed mass
structure significantly. Model anisotropies tend to strengthen if the weight on
regularisation is reduced, but the general property of a galaxy to be radially
or tangentially anisotropic, respectively, does not change. (abridged)Comment: 31 pages, 34 figures; accepted for publication in MNRA
The Stellar Halos of Massive Elliptical Galaxies II: Detailed Abundance Ratios at Large Radius
We study the radial dependence in stellar populations of 33 nearby early-type
galaxies with central stellar velocity dispersions sigma* > 150 km/s. We
measure stellar population properties in composite spectra, and use ratios of
these composites to highlight the largest spectral changes as a function of
radius. Based on stellar population modeling, the typical star at 2 R_e is old
(~10 Gyr), relatively metal poor ([Fe/H] -0.5), and alpha-enhanced
([Mg/Fe]~0.3). The stars were made rapidly at z~1.5-2 in shallow potential
wells. Declining radial gradients in [C/Fe], which follow [Fe/H], also arise
from rapid star formation timescales due to declining carbon yields from
low-metallicity massive stars. In contrast, [N/Fe] remains high at large
radius. Stars at large radius have different abundance ratio patterns from
stars in the center of any present-day galaxy, but are similar to Milky Way
thick disk stars. Our observations are thus consistent with a picture in which
the stellar outskirts are built up through minor mergers with disky galaxies
whose star formation is truncated early (z~1.5-2).Comment: ApJ in press, 12 pages, 6 figure
The Globular Cluster System of NGC 1399: III. VLT Spectroscopy and Database
Radial velocities of 468 globular clusters around NGC 1399, the central
galaxy in the Fornax cluster, have been obtained with FORS2 and the Mask
Exchange Unit (MXU) at the ESO Very Large Telescope. This is the largest sample
of globular cluster velocities around any galaxy obtained so far. The mean
velocity uncertainty is 50 km/sec. This data sample is accurate and large
enough to be used in studies of the mass distribution of NGC 1399 and the
properties of its globular cluster system. Here we describe the observations,
the reduction procedure, and discuss the uncertainties of the resulting
velocities. The complete sample of cluster velocities which is used in a
dynamical study of NGC 1399 is tabulated. A subsample is compared with
previously published values.Comment: 34 pages, 9 figures, 2 tables, accepted by A
Hydrodynamical evolution near the QCD critical end point
Hydrodynamical calculations have been successful in describing global
observables in ultrarelativistic heavy ion collisions, which aim to observe the
production of the quark-gluon plasma. On the other hand, recently, a lot of
evidence that there exists a critical end point (CEP) in the QCD phase diagram
has been accumulating. Nevertheless, so far, no equation of state with the CEP
has been employed in hydrodynamical calculations. In this paper, we construct
the equation of state with the CEP on the basis of the universality hypothesis
and show that the CEP acts as an attractor of isentropic trajectories. We also
consider the time evolution in the case with the CEP and discuss how the CEP
affects the final state observables, such as the correlation length,
fluctuation, chemical freezeout, kinetic freezeout, and so on. Finally, we
argue that the anomalously low kinetic freezeout temperature at the BNL
Relativistic Heavy Ion Collider suggests the possibility of the existence of
the CEP.Comment: 13 pages, 12 figures, accepted for publication in Physical Review
Monster black holes
A combination of ground-based and spacecraft observations has uncovered two
black holes of 10 billion solar masses in the nearby Universe. The finding
sheds light on how these cosmic monsters co-evolve with galaxies.Comment: 2 pages, 1 figure, LaTeX. Published in Nature "News & Views
Central K-band kinematics and line strength maps of NGC 1399
In this paper we present for the first time high spatial resolution K-band
maps of the central kinematical and near-infrared spectral properties of the
giant cD galaxy in the Fornax cluster, NGC 1399. We confirm the presence of a
central velocity dispersion dip within radius < 0.2" seen in previous long-slit
studies. Our velocity dispersion maps give evidence for a non-symmetric
structure in this central area by showing three sigma peaks to the north-east,
south-east and west of the galaxy centre. Additionally we measure near-IR line
strength indices at unprecedented spatial resolution in NGC 1399. The most
important features we observe in our 2-dimensional line strength maps are drops
in Na I and CO(2-0) line strength in the nuclear region of the galaxy,
coinciding spatially with the drop in sigma. The observed line strength and
velocity dispersion changes suggest a scenario where the centre of NGC 1399
harbours a dynamically cold subsystem with a distinct stellar population.Comment: 9 pages, 5 figures, accepted for publication in A&
- …