67 research outputs found

    Lifetime Measurement of the Cesium 6P\u3csub\u3e3/2\u3c/sub\u3e Level Using Ultrafast Pump-Probe Laser Pulses

    Get PDF
    Using the inherent timing stability of pulses from a mode-locked laser, we measure the cesium 6P3/2 excited-state lifetime. An initial pump pulse excites cesium atoms in two counterpropagating atomic beams to the 6P3/2 level. A subsequent synchronized probe pulse ionizes atoms that remain in the excited state and the photoions are collected and counted. By selecting pump pulses that vary in time with respect to the probe pulses, we obtain a sampling of the excited-state population in time, resulting in a lifetime value of 30.462(46) ns. The measurement uncertainty (0.15%) is slightly larger than our previous report of 0.12% [J. F. Sell et al., Phys. Rev. A 84, 010501(R) (2011)] due to the inclusion of additional data and systematic errors. In this follow-up paper we present details of the primary systematic errors encountered in the measurement, which include atomic motion within the intensity profiles of the laser beams, quantum beating in the photoion signal, and radiation trapping. Improvements to further reduce the experimental uncertainty are also discussed

    Core charge distribution and self assembly of columnar phases: the case of triphenylenes and azatriphenylenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relation betweeen the structure of discotic molecules and columnar properties, a crucial point for the realization of new advanced materials, is still largely unknown. A paradigmatic case is that hexa-alkyl-thio substituted triphenylenes present mesogenic behavior while the corresponding azatriphenylenes, similar in shape and chemical structure, but with a different core charge distribution, do not form any liquid crystalline mesophase. This study is aimed at investigating, with the help of computer simulations techniques, the effects on phase behaviour of changes of the charge distribution in the discotic core.</p> <p>Results</p> <p>We described the shape and the pair, dispersive and electrostatic, interactions of hexa alkyl triphenylenes by uniaxial Gay-Berne discs with embedded point charges. Gay-Berne parameters were deduced by fitting the dispersive energies obtained from an atomistic molecular dynamics simulation of a small sample of hexa-octyl-thio triphenylene molecules in columnar phase, while a genetic algorithm was used to get a minimal set of point charges that properly reproduces the ab anitio electrostatic potential. We performed Monte Carlo simulations of three molecular models: the pure Gay-Berne disc, used as a reference, the Gay-Berne disc with hexa-thio triphenylene point charges, the Gay-Berne disc with hexa-thio azatriphenylene point charges. The phase diagram of the pure model evidences a rich polymorphism, with isotropic, columnar and crystalline phases at low pressure, and the appearance of nematic phase at higher pressure.</p> <p>Conclusion</p> <p>We found that the intermolecular electrostatic potential among the cores is fundamental in sta-bilizing/destabilizing columnar phases; in particular the triphenylene charge distribution stabilizes the columnar structure, while the azatriphenylene distribution suppresses its formation in favor of the nematic phase. We believe the present model could be successfully employed as the basis for coarse-grained level simulations of a wider class of triphenylene derivatives.</p

    Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications

    No full text
    Lanthanide complexes have been developed and are reported herein. These complexes were derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis spectroscopy as well as MS. The photophysical properties of these complexes were studied; high molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale were obtained. Anion binding results in a change in the photophysical properties of the complexes. The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large binding constants were obtained for the coordination of anions to the sensor

    Terpyridine-Functionalized Calixarenes: Synthesis, Characterization and Anion Sensing Applications

    No full text
    Lanthanide complexes have been developed and are reported herein. These complexes were derived from a terpyridine-functionalized calix[4]arene ligand, chelated with Tb3+ and Eu3+. Synthesis of these complexes was achieved in two steps from a calix[4]arene derivative: (1) amide coupling of a calix[4]arene bearing carboxylic acid functionalities and (2) metallation with a lanthanide triflate salt. The ligand and its complexes were characterized by NMR (1H and 13C), fluorescence and UV-vis spectroscopy as well as MS. The photophysical properties of these complexes were studied; high molar absorptivity values, modest quantum yields and luminescence lifetimes on the ms timescale were obtained. Anion binding results in a change in the photophysical properties of the complexes. The anion sensing ability of the Tb(III) complex was evaluated via visual detection, UV-vis and fluorescence studies. The sensor was found to be responsive towards a variety of anions, and large binding constants were obtained for the coordination of anions to the sensor

    Collimated blue and infrared beams generated by two-photon excitation in Rb vapor

    Get PDF
    Utilizing two-photon excitation in hot Rb vapor we demonstrate the generation of collimated optical fields at 420 and 1324 nm. Input laser beams at 780 and 776 nm enter a heated Rb vapor cell collinear and circularly polarized, driving Rb atoms to the 5D[subscript 5∕2] state. Under phase-matching conditions coherence among the 5S[subscript 1∕2] → 5P[subscript 3∕2] → 5D[subscript 5∕2] → 6P[subscript 3∕2] transitions produces a blue (420 nm) beam by four-wave mixing. We also observe a forward and backward propagating IR (1324 nm) beam, due to cascading decays through the 6S[subscript 1∕2] → 5P[subscript 1∕2] states. Power saturation of the generated beams is investigated by scaling the input powers to greater than 200 mW, resulting in a coherent blue beam of 9.1mW power, almost an order of magnitude larger than previously achieved. We measure the dependences of both beams in relation to the Rb density, the frequency detuning between Rb ground-state hyperfine levels, and the input laser intensities

    Temperature Dependence of Rb 5P Fine-Structure Transfer Induced By \u3csup\u3e4\u3c/sup\u3eHe Collisions

    No full text
    Employing ultrafast laser excitation and time-correlated single-photon counting, we have measured the fine-structure transfer between Rb 5P states induced by collisions with 4He buffer gas at temperatures up to 150°C. The temperature dependence of the binary cross section agrees with earlier measurements. Our data show that the temperature dependence of the three-body rate is about the same as that of the binary rate. The three-body rate can be described as arising from the reduction of the rubidium fine-structure splitting due to nearby helium atoms. (C) 2012 Optical Society of Americ
    • …
    corecore