31 research outputs found

    Predicting species and community responses to global change using structured expert judgement : an Australian mountain ecosystems case study

    Get PDF
    Conservation managers are under increasing pressure to make decisions about the allocation of finite resources to protect biodiversity under a changing climate. However, the impacts of climate and global change drivers on species are outpacing our capacity to collect the empirical data necessary to inform these decisions. This is particularly the case in the Australian Alps which has already undergone recent changes in climate and experienced more frequent large-scale bushfires. In lieu of empirical data, we used a structured expert elicitation method (the IDEA protocol) to estimate the abundance and distribution of nine vegetation groups and 89 Australian alpine and subalpine species by the year 2050. Experts predicted that most alpine vegetation communities would decline in extent by 2050; only woodlands and heathlands are predicted to increase in extent. Predicted species-level responses for alpine plants and animals were highly variable and uncertain. In general, alpine plants spanned the range of possible responses, with some expected to increase, decrease or not change in cover. By contrast, almost all animal species are predicted to decline or not change in abundance or elevation range; more species with water-centric life-cycles are expected to decline in abundance than other species. While long-term ecological data will always be the gold-standard in informing the future of biodiversity, the method and outcomes outlined here provide a pragmatic and coherent basis upon which to start informing conservation policy and management in the face of rapid change and paucity of data

    An atlas of seabed biodiversity for Aotearoa New Zealand

    Get PDF
    \ua9 2023 Copernicus GmbH. All rights reserved. The waters of Aotearoa New Zealand span over 4.2ĝ€\uafmillionĝ€\uafkm2 of the South Pacific Ocean and harbour a rich diversity of seafloor-Associated taxa. Due to the immensity and remoteness of the area, there are significant gaps in the availability of data that can be used to quantify and map the distribution of seafloor and demersal biodiversity, limiting effective management. In this study, we describe the development and accessibility of an online atlas of seabed biodiversity that aims to fill these gaps. Species distribution models were developed for 579 taxa across four taxonomic groups: demersal fish, reef fish, subtidal invertebrates and macroalgae. Spatial layers for taxa distribution based on habitat suitability were statistically validated and then, as a further check, evaluated by taxonomic experts to provide measures of confidence to guide the future use of these layers. Spatially explicit uncertainty (SD) layers were also developed for each taxon distribution. We generated layer-specific metadata, including statistical and expert evaluation scores, which were uploaded alongside the accompanying spatial layers to the open access database Zenodo. This database provides the most comprehensive source of information on the distribution of seafloor taxa for Aotearoa New Zealand and is thus a valuable resource for managers, researchers and the public that will guide the management and conservation of seafloor communities. The atlas of seabed biodiversity for Aotearoa New Zealand is freely accessible via the open-Access database Zenodo under 10.5281/zenodo.7083642 (Stephenson et al., 2022)

    Desenvolvimento de um roteiro conceitual para a gestão da biodiversidade e dos serviços ecossistêmicos no Caribe mexicano

    Get PDF
    Coral reefs and mangroves support rich biodiversity and provide ecosystem services that range from food, recreational benefits and coastal protection services, among others. They are one of the most threatened ecosystems by urbanization processes. In this context, we developed a conceptual framework for the management of biodiversity and ecosystem services for these coastal environments. We based our workflow on two sections: “Information base” and “Governance” and use the Puerto Morelos Coastal region as a case study for coastal protection. Puerto Morelos is between two of the most touristic destinations of Mexico (Playa del Carmen and Cancun) that has experienced an increase of population in the past four decades resulting in an intensification of multiple threats to its ecosystems. We characterized the two ecosystems with a “Management Units” strategy. An expert-based ecosystem services matrix was also described in order to connect mangroves and coral reef ecosystems with the multiple beneficiaries. Then an ecosystem model (conceptual model and Global Biodiversity model) was developed. The conceptual model was useful in understanding the interplay processes between systems regarding the ecosystem service of “Coastal Protection”. The Global Biodiversity model evidenced the human-induced shifts in the biodiversity for mangrove and coral reefs ecosystems. Also, a projection for 2035 of “best” and “worst” scenarios was applied using GLOBIO3. A DPSIR conceptual framework was used to analyze environmental problems regarding ecosystem services maintenance. Finally, we evaluated a set of policies associated with these ecosystems that favor coastal protection integrity. This framework facilitates the identification of the most relevant processes and controls about the provision of coastal protection service. It can also be useful to better target management actions and as a tool to identify future management needs to tackle the challenges preventing more effective conservation of coastal environments.Recifes de coral e manguezais possuem rica biodiversidade e fornecem serviços ecossistêmicos, tais como, alimento, recreação, proteção costeira, entre outros. Esses ecossistemas encontram-se entre os mais ameaçados pelos processos de urbanização. Nesse contexto, desenvolvemos um roteiro conceitual para a gestão da biodiversidade e dos serviços ecossistêmicos desses ambientes costeiros. Organizamos nossa sequência de passos de trabalho em duas seções: “Base de informações” e “Governança” e usamos a região costeira da cidade de Puerto Morelos (México) como um estudo de caso para analisar o serviço de proteção de costa. Puerto Morelos encontra-se entre dois dos destinos mais turísticos do México (Playa del Carmen e Cancún), e portanto sua população vem aumentando nas últimas quatro décadas, resultando na intensificação de múltiplas ameaças para os ecossistemas. Primeiramente, caracterizamos os dois ecossistemas identificando-os como “Unidades de Gestão”, detalhando seus principais componentes e processos. Através de uma “Matriz de serviços ecossistêmicos”, construída com base na opinião de especialistas, foram sistematizados os principais serviços ecossistêmicos prestados pelos manguezais e recifes de corais aos múltiplos beneficiários. Em seguida, foi desenvolvida uma modelagem do sistema (e ecossistemas) através de sua representação na forma de um modelo conceitual e um modelo numérico de Biodiversidade Global. O modelo conceitual facilitou a compreensão dos processos de interação entre sistemas em relação ao serviço “Proteção Costeira”. O modelo numérico evidenciou as mudanças induzidas pelo homem na biodiversidade dos ecossistemas de manguezal e recifes de coral. Além disso, uma projeção dos cenários “melhor” e “pior” foi desenvolvida para 2035 usando GLOBIO3. A Estrutura conceitual DPSIR foi aplicada para analisar problemas ambientais relacionados à manutenção dos serviços ecossistêmicos. Finalmente, avaliamos um conjunto de políticas públicas associadas a esses ecossistemas e que favorecem a integridade da proteção costeira. Portanto, o roteiro facilitou a identificação dos principais processos e controles para a provisão de um serviço ecossistêmico. Além disso, pode ser útil para direcionar melhor as ações de gerenciamento, bem como, uma ferramenta para identificar necessidades futuras de planejamento e gestão para enfrentar desafios que permitam uma conservação mais eficaz dos ambientes costeiros.Fil: Sánchez Quinto, Andrés. Universidad Nacional Autónoma de México; MéxicoFil: Costa, Julliet Correa da. Universidade Federal de Santa Catarina; BrasilFil: Zamboni, Nadia Selene. Universidade Federal do Rio Grande do Norte; BrasilFil: Sanches, Fábio H. C.. Universidade Federal de Sao Paulo; BrasilFil: Principe, Silas C.. Universidade de Sao Paulo; BrasilFil: Viotto, Evangelina del Valle. Provincia de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Universidad Autónoma de Entre Ríos. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción; ArgentinaFil: Casagranda, Maria Elvira. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; ArgentinaFil: Lima, Francisco A. da Veiga. Universidade Federal de Santa Catarina; BrasilFil: Possamai, Bianca. Universidade Federal Do Rio Grande.; BrasilFil: Faroni Perez, Larisse. Universidade Federal de Juiz de Fora; Brasi

    An atlas of seabed biodiversity for Aotearoa New Zealand

    Get PDF
    The waters of Aotearoa New Zealand span over 4.2 million km2 of the South Pacific Ocean and harbour a rich diversity of seafloor-associated taxa. Due to the immensity and remoteness of the area, there are significant gaps in the availability of data that can be used to quantify and map the distribution of seafloor and demersal biodiversity, limiting effective management. In this study, we describe the development and accessibility of an online atlas of seabed biodiversity that aims to fill these gaps. Species distribution models were developed for 579 taxa across four taxonomic groups: demersal fish, reef fish, subtidal invertebrates and macroalgae. Spatial layers for taxa distribution based on habitat suitability were statistically validated and then, as a further check, evaluated by taxonomic experts to provide measures of confidence to guide the future use of these layers. Spatially explicit uncertainty (SD) layers were also developed for each taxon distribution. We generated layer-specific metadata, including statistical and expert evaluation scores, which were uploaded alongside the accompanying spatial layers to the open access database Zenodo. This database provides the most comprehensive source of information on the distribution of seafloor taxa for Aotearoa New Zealand and is thus a valuable resource for managers, researchers and the public that will guide the management and conservation of seafloor communities. The atlas of seabed biodiversity for Aotearoa New Zealand is freely accessible via the open-access database Zenodo under https://doi.org/10.5281/zenodo.7083642 (Stephenson et al., 2022).</p

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Per\ufa

    Get PDF
    \ua9 2024. The Author(s). Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    Plant trait and vegetation data along a 1314 m elevation gradient with fire history in Puna grasslands, Perú

    Get PDF
    Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families

    AusTraits, a curated plant trait database for the Australian flora

    Get PDF
    We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge

    Plant thermal tolerance: a global synthesis for future research

    Full text link
    Extreme temperature events are increasing in frequency and intensity across the globe. These extremes, rather than averages, drive species evolution and determine survival by profoundly changing the structure and fluidity of cell membranes, altering enzyme function, and denaturing proteins. Given not only our dependence on agricultural crops and natural vegetation, but also the role of photosynthetic processes within the carbon and hydrological cycles, it is imperative to assess the state of our understanding of the potential impacts of extreme events on plants. Scaling responses from the molecular and organ level to ecosystem function is not without challenge however. There is vast literature on plant thermal tolerance research, but the body of literature is so large, the approaches so disparate and often siloed among disciplines, that research in this field risks floundering at a critical time. We conducted a systematic review of more than 21,500 studies spanning over 100 years of research that yielded almost 1,700 included studies on the tolerance of cultivated and wild land plants to both heat and cold. Our review indicates that most studies on thermal tolerance focus on the cold tolerance of cultivated species (52%) and only a trivial percentage of studies have considered both heat and cold tolerance of any given species (~5%). Combined heat and cold tolerance are important in areas where plants are exposed to extremes of both or may be in the future. This review illustrates the global distribution and concentrations of thermal tolerance studies and the diversity of thermal tolerance methods, ranging from molecular to biochemical, physiological and physical examinations, from transgenic model plants to agricultural and horticultural crops, to natural forest trees, shrubs, and grassland herbs. Critically, it also demonstrates that methods and metrics for assessing thermal tolerance are far from standardised, such that our potential to achieve mechanistic insight and compare across species and biomes is compromised. Without reconciling these issues, the scope for incorporating this critical ecological information into vegetation elements of land surface models may be limited. To aid this, we identify priorities for achieving efficient, reliable, and repeatable research across the spectrum of plant thermal tolerance. These priorities, including meta-analytical approaches and comparative experimental work, will not only further fundamental plant science, but will prove essential next steps if we are to integrate such diverse data on a critical plant functional trait into a usable metric within biogeochemical models

    Generalized linear mixed models: a practical guide for ecology and evolution

    Full text link
    How should ecologists and evolutionary biologists analyze nonnormal data that involve random effects? Nonnormal data such as counts or proportions often defy classical statistical procedures. Generalized linear mixed models (GLMMs) provide a more flexible approach for analyzing nonnormal data when random effects are pre- sent. The explosion of research on GLMMs in the last decade has generated considerable uncertainty for prac- titioners in ecology and evolution. Despite the availability of accurate techniques for estimating GLMM parameters in simple cases, complex GLMMs are challenging to fit and statistical inference such as hypothesis testing remains difficult. We review the use (and misuse) of GLMMs in ecology and evolution, discuss estimation and inference and summarize ‘best-practice’ data analysis procedures for scientists facing this challenge
    corecore