6 research outputs found

    Squeezed Light for the Interferometric Detection of High Frequency Gravitational Waves

    Full text link
    The quantum noise of the light field is a fundamental noise source in interferometric gravitational wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called Standard-Quantum-Limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyze the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO600 detector with present design parameters will benefit from frequency dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO600 will still be dominated by shot-noise and improved by a factor of 10^{6dB/20dB}~2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6x10^{-23} above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency dependent squeezing by introducing an additional optical component to GEO600s signal-recycling cavity.Comment: Presentation at AMALDI Conference 2003 in Pis

    Conversion of conventional gravitational-wave interferometers into QND interferometers by modifying their input and/or output optics

    Get PDF
    The LIGO-II gravitational-wave interferometers (ca. 2006--2008) are designed to have sensitivities at about the standard quantum limit (SQL) near 100 Hz. This paper describes and analyzes possible designs for subsequent, LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad-band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a "squeezed-input interferometer" (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a "variational-output" interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a "squeezed-variational interferometer" with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Perot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology and with laser powers comparable to that planned for LIGO-II, these interferometers can beat the amplitude SQL by factors in the range from 3 to 5, corresponding to event rate increases between ~30 and ~100 over the rate for a SQL-limited interferometer.Comment: Submitted to Physical Review D; RevTeX manuscript with 16 figures; prints to 33 pages in Physical Review double column format. Minor revisions have been made in response to referee repor

    Emission-Spectra of an Atom in a Cavity in the Presence of a Squeezed Vacuum

    No full text
    Journals published by the American Physical Society can be found at http://publish.aps.org
    corecore