The LIGO-II gravitational-wave interferometers (ca. 2006--2008) are designed
to have sensitivities at about the standard quantum limit (SQL) near 100 Hz.
This paper describes and analyzes possible designs for subsequent, LIGO-III
interferometers that can beat the SQL. These designs are identical to a
conventional broad-band interferometer (without signal recycling), except for
new input and/or output optics. Three designs are analyzed: (i) a
"squeezed-input interferometer" (conceived by Unruh based on earlier work of
Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is
injected into the interferometer's dark port; (ii) a "variational-output"
interferometer (conceived in a different form by Vyatchanin, Matsko and
Zubova), in which homodyne detection with FD homodyne phase is performed on the
output light; and (iii) a "squeezed-variational interferometer" with squeezed
input and FD-homodyne output. It is shown that the FD squeezed-input light can
be produced by sending ordinary squeezed light through two successive
Fabry-Perot filter cavities before injection into the interferometer, and
FD-homodyne detection can be achieved by sending the output light through two
filter cavities before ordinary homodyne detection. With anticipated technology
and with laser powers comparable to that planned for LIGO-II, these
interferometers can beat the amplitude SQL by factors in the range from 3 to 5,
corresponding to event rate increases between ~30 and ~100 over the rate for a
SQL-limited interferometer.Comment: Submitted to Physical Review D; RevTeX manuscript with 16 figures;
prints to 33 pages in Physical Review double column format. Minor revisions
have been made in response to referee repor