122 research outputs found

    Numerical simulations of the impacts of mountain on oasis effects in arid Central Asia

    Get PDF
    The oases in the mountain-basin systems of Central Asia are extremely fragile. Investigating oasis effects and oasis-desert interactions is important for understanding the ecological stability of oases. However, previous studies have been performed only in oasis-desert environments and have not considered the impacts of mountains. In this study, oasis effects were explored in the context of mountain effects in the northern Tianshan Mountains (NTM) using the Weather Research and Forecasting (WRF) model. Four numerical simulations are performed. The def simulation uses the default terrestrial datasets provided by the WRF model. The mod simulation uses actual terrestrial datasets from satellite products. The non-oasis simulation is a scenario simulation in which oasis areas are replaced by desert conditions, while all other conditions are the same as the mod simulation. Finally, the non-mountain simulation is a scenario simulation in which the elevation values of all grids are set to a constant value of 300 m, while all other conditions are the same as in the mod simulation. The mod simulation agrees well with near-surface measurements of temperature, relative humidity and latent heat flux. The Tianshan Mountains exert a cooling and wetting effects in the NTM region. The oasis breeze circulation (OBC) between oases and the deserts is counteracted by the stronger background circulation. Thus, the self-supporting mechanism of oases originating from the OBC plays a limited role in maintaining the ecological stability of oases in this mountain-basin system. However, the mountain wind causes the cold-wet'' island effects of the oases to extend into the oasis-desert transition zone at night, which is beneficial for plants in the transition region

    Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL

    Get PDF
    Fragmented ecosystems of the desiccated Aral Sea seek answers to the profound local hydrologically- and water-related problems. Particularly, in the Small Aral Sea Basin (SASB), these problems are associated with low precipitation, increased temperature, land use and evapotranspiration (ET) changes. Here, the utility of high-resolution satellite dataset is employed to model the growing season dynamic of near-surface fluxes controlled by the advective effects of desert and oasis ecosystems in the SASB. This study adapted and applied the sensible heat flux calibration mechanism of Surface Energy Balance Algorithm for Land (SEBAL) to 16 clear-sky Landsat 7 ETM+ dataset, following a guided automatic pixels search from surface temperature T-s and Normalized Difference Vegetation Index NDVI (). Results were comprehensively validated with flux components and actual ET (ETa) outputs of Eddy Covariance (EC) and Meteorological Station (KZL) observations located in the desert and oasis, respectively. Compared with the original SEBAL, a noteworthy enhancement of flux estimations was achieved as follows: - desert ecosystem ETa R-2 = 0.94; oasis ecosystem ETa R-2 = 0.98 (P < 0.05). The improvement uncovered the exact land use contributions to ETa variability, with average estimates ranging from 1.24 mm to 6.98 mm . Additionally, instantaneous ET to NDVI (ETins-NDVI) ratio indicated that desert and oasis consumptive water use vary significantly with time of the season. This study indicates the possibility of continuous daily ET monitoring with considerable implications for improving water resources decision support over complex data-scarce drylands

    Improved atmospheric modelling of the oasis-desert system in Central Asia using WRF with actual satellite products

    Get PDF
    Because of the use of outdated terrestrial datasets, regional climate models (RCMs) have a limited ability to accurately simulate weather and climate conditions over heterogeneous oasis-desert systems, especially near large mountains. Using actual terrestrial datasets from satellite products for RCMs is the only possible solution to the limitation; however, it is impractical for long-period simulations due to the limited satellite products available before 2000 and the extremely time- and labor-consuming processes involved. In this study, we used the Weather Research and Forecasting (WRF) model with observed estimates of land use (LU), albedo, Leaf Area Index (LAI), and green Vegetation Fraction (VF) datasets from satellite products to examine which terrestrial datasets have a great impact on simulating water and heat conditions over heterogeneous oasis-desert systems in the northern Tianshan Mountains. Five simulations were conducted for 1-31 July in both 2010 and 2012. The decrease in the root mean squared error and increase in the coefficient of determination for the 2 m temperature (T2), humidity (RH), latent heat flux (LE), and wind speed (WS) suggest that these datasets improve the performance of WRF in both years; in particular, oasis effects are more realistically simulated. Using actual satellite-derived fractional vegetation coverage data has a much greater effect on the simulation of T2, RH, and LE than the other parameters, resulting in mean error correction values of 62%, 87%, and 92%, respectively. LU data is the primary parameter because it strongly influences other secondary land surface parameters, such as LAI and albedo. We conclude that actual LU and VF data should be used in the WRF for both weather and climate simulations

    Agriculture intensification increases summer precipitation in Tianshan Mountains, China

    Get PDF
    The land-use and land-cover change has a significant impact on the climate at different spatio-temporal scales. In this study, we explored the long term oasis expansion effects on regional summer precipitation in the north slope of Tianshan Mountains, China using high-resolution regional climate model. The results indicate that the oasis expansion increases the summer precipitation in the middle Tianshan Mountains while it has only a small effect over the oasis regions itself. The results indicate further that the oasis expansion affects mainly the late afternoon summer convective precipitation. The advection of air with additional moisture from the oasis areas to the mountains due to the mountain/plain circulation system during the day triggers the orographic precipitation in the middle mountain regions. These new results indicate that the oasis expansion could attribute significantly to the recent finding from observational studies about the increasing trend of precipitation in the middle Tianshan Mountains

    Assessment of climate change in Central Asia from 1980 to 2100 using the Koppen-Geiger climate classification

    Get PDF
    The accelerated global warming and heterogeneous change in precipitation have been resulting in climate system shifts, which plays a key role in the stability of ecosystem and social economic development. Central Asia is account 80% of the temperate desert, characterized by fragile ecosystem; however, it has experienced the fastest warming in recent decades and projected warming in future. The Koppen-Geiger climate classification is a useful tool to assess the potential impacts of climate change on regional ecosystem. The spatial shift and temporal evolution of each climatic zone based on Koppen-Geiger climate classification are analyzed in historical and future period under different scenarios (RCP2.6, RCP4.5 and RCP8.5), high risk regions that might experience more frequent climatic zone shifts are delimited in this study, which could provide the useful information for developing mitigate strategies in coping with the warming threat. The hotter and dryer subtypes of arid climatic zone and warmer subtypes of temperate climatic zone expanded their coverage in Central Asia, corresponding to the tundra climatic, cooler subtype of arid and temperate climatic zone contracted. Based on a method defining the climate-sensitivity, high risk regions are mainly distributed in northern Kazakhstan and Tianshan Mountains region

    Salinization dynamics in irrigated soils of the Svetloyarsk irrigation system, Volgograd oblast

    Get PDF
    On the basis of soil surveys performed by the Volgograd hydrogeological reclamation expedition in 1998 and 2006, published data, and original materials obtained by the authors, the dynamics of soil salinization within the Svetloyarsk irrigation system in Volgograd oblast during the irrigation and post-irrigation periods have been traced. It is found that high irrigation rates under conditions of poor drainage and closed drainage basins upon both shallow (within the Caspian Lowland) and relatively deep (on the Ergeni Upland) occurrence of saline groundwater and the presence of natural salts in the soils and subsoils lead to the rise in the groundwater level above the critical level and the development of secondary salinization in the previously surfacesaline, deeply saline, and even nonsaline soils. During the post-irrigation period (15-18 years) under modern climatic conditions, the groundwater level has been descending to a depth of more than 3 m, and the degree of salinity in the upper meter of light chestnut and meadow-chestnut soils has decreased owing to the leaching of salts with atmospheric precipitation

    Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China

    Get PDF
    Uses of models of land use change are primary tools for analyzing the causes and consequences of land use changes, assessing the impacts of land use change on ecosystems and supporting land use planning and policy. However, no single model is able to capture all of key processes essential to explore land use change at different scales and make a full assessment of driving factors and impacts. Based on the multi-scale characteristics of land use change, combination and integration of currently existed models of land use change could be a feasible solution. Taken Sangong watershed as a case study, this paper describes an integrated methodology in which the conversion of land use and its effect model (CLUE), a spatially explicit land use change model, has been combined with a system dynamic model (SD) to analyze land use dynamics at different scales. A SD model is used to calculate area changes in demand for land types as a whole while a CLUE model is used to transfer these demands to land use patterns. Without the spatial consideration, the SD model ensures an appropriate treatment of macro-economic, demographic and technology developments, and changes in economic policies influencing the demand and supply for land use in a specific region. With CLUE model the land use change has been simulated at a high spatial resolution with the spatial consideration of land use suitability, spatial policies and restrictions to satisfy the balance between land use demand and supply. The application of the combination of SD and CLUE model in Sangong watershed suggests that this methodology have the ability to reflect the complex behaviors of land use system at different scales to some extent and be a useful tool for analysis of complex land use driving factors such as land use policies and assessment of its impacts on land use change. The established SD model was fitted or calibrated with the 1987-1998 data and validated with the 1998-2004 data; combining SD model with CLUE-S model, future land use scenarios were analyzed during 2004-2030. This work could be used for better understanding of the possible impacts of land use change on terrestrial ecosystem and provide scientific support for land use planning and managements of the watershed. (C) 2010 Elsevier B.V. All rights reserved

    Numerical study of the interaction between oasis and urban areas within an arid mountains-desert system in Xinjiang, China

    Get PDF
    The rapid oasis expansion and urbanization that occurred in Xinjiang province (China) in the last decades have greatly modified the land surface energy balance and influenced the local circulation under the arid mountains-plain background system. In this study, we first evaluated the ALARO regional climate model coupled to the land surface scheme SURFEX at 4 km resolution using 53 national climatological stations and 5 automatic weather stations. We found that the model correctly simulates daily and hourly variation of 2 m temperature and relative humidity. A 4-day clear sky period has been chosen to study both local atmospheric circulations and their mutual interaction. Observations and simulations both show that a low-level divergence over oasis appears between 19:00 and 21:00 Beijing Time when the background mountain-plain wind system is weak. The model simulates a synergistic interaction between the oasis-desert breeze and urban-rural breeze from 16:00 until 22:00 with a maximum effect at 20:00 when the downdraft over oasis (updraft over urban) areas increases by 0.8 (0.4) Pa/s. The results show that the oasis expansion decreases the nocturnal urban heat island in the city of Urumqi by 0.8 degrees C, while the impact of urban expansion on the oasis cold island is negligible

    Pinus mugo Krummholz dynamics during concomitant change in pastoralism and climate in the central Apennines

    Get PDF
    The dynamics of Pinus mugo krummholz during concomitant change in pastoral land use and climate in central Italy since the mid-20th century was investigated. Krummholz dynamics were detected using sequential aerial photography and fitted to a logistic regression model with elevation, grazing, proximity to beech forest, and proximity to krummholz as explanatory variables. Dendrochronological series were correlated with temperature and precipitation and fitted to a linear model. During this period krummholz doubled in extent and migrated 35–65 m upslope. Expansion was positively associated with krummholz proximity, residual pastoral grazing, and proximity to beech forest beyond 10 m and negatively associated with elevation and beech forest closer than 10 m. The logistic regression model forecasts krummholz migration by an additional 30 m upslope by 2060. During the 20th century, winter and spring minimum temperatures increased but did not result in increased radial stem growth of P. mugo. The combined evidence suggests that krummholz dynamics can be explained by the legacy of summer pastoralism and the dispersal limitations of P. mugo, rather than by climate change.An Erasmus Mundus fellowship, the National Natural Science Foundation of China (41271126 and 41361091), the Science and Technology Foundation of Guizhou Province (J[2014]2126 and LH[2015] 7776), and a COST ECHOES (STSM-FP0703-6551) short scientific mission grant.http://www.mrd-journal.org/default.aspam2017Geography, Geoinformatics and Meteorolog
    • …
    corecore