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A B S T R A C T

The land-use and land-cover change has a significant impact on the climate at different spatio-temporal scales. In
this study, we explored the long term oasis expansion effects on regional summer precipitation in the north slope
of Tianshan Mountains, China using high-resolution regional climate model. The results indicate that the oasis
expansion increases the summer precipitation in the middle Tianshan Mountains while it has only a small effect
over the oasis regions itself. The results indicate further that the oasis expansion affects mainly the late afternoon
summer convective precipitation. The advection of air with additional moisture from the oasis areas to the
mountains due to the mountain/plain circulation system during the day triggers the orographic precipitation in
the middle mountain regions. These new results indicate that the oasis expansion could attribute significantly to
the recent finding from observational studies about the increasing trend of precipitation in the middle Tianshan
Mountains.

1. Introduction

The land-use and land-cover change (LULCC) alters surface energy
and moisture budgets and has significant impacts on the climate on
local, regional, sub-continental and global scale (Chase et al., 1999;
Davin et al., 2007; de Vrese et al., 2016; Lawrence and Chase, 2010;
Lawrence et al., 2012; Lee et al., 2009; Pielke and Avissar, 1990;
Pongratz et al., 2010; Quesada and Arneth, 2017; Stohlgren et al.,
1998). Recently, both the local and remote effects on precipitation from
the conversion of natural land cover to irrigated agriculture lands have
got wide attention. For example, Cook et al. (2014) explored the irri-
gation effects using a global climate model. They found that irrigation
enhanced cloud cover and precipitation in Western North America, the
Mediterranean and the Middle East while it caused a reduction in
summer Monsoon precipitation over Asia. On intercontinental and
transcontinental scale, de Vrese et al. (2016) found that the precipita-
tion in some of the arid regions in Eastern Africa is related to irrigation-

based agriculture in Asia. Moreover, on regional scale, both observa-
tional and model simulation studies indicate that irrigated agriculture
expansion in the central United States has resulted in an increase of
summer precipitation in the Midwestern United States, situated hun-
dred miles downwind (Alter et al., 2015; DeAngelis et al., 2010;
Harding et al., 2013; Lo and Famiglietti, 2013; Moore and Rojstaczer,
2002; Yun et al., 2013). The irrigated agriculture effects on local, re-
gional and sub-continental precipitation have been shown in other re-
gions, including India (Roy et al., 2011), Australia (Hirsch et al., 2015;
Nair et al., 2011) and Southeast Asia (Quesada et al., 2017; Shukla
et al., 2014; Xu et al., 2015). Mahmood et al. (2014) suggested that the
crop phenology, ambient atmospheric moisture content and back-
ground synoptic-scale atmospheric circulation are critical for triggering
convective cloud and precipitation development in agriculture areas.
For example, Chase et al. (1999) showed that the land use changes in
the adjacent Great Plains affected the cloud cover and precipitation in
the mountain regions through altering the local mountain-plains
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circulation.
The Mountain-Oasis-Desert System (MODS) is characterized by the

presence of Mountains which act as a water tower for the oases that are
spread between the Mountains and the surrounding background desert.
MODS are widely spread in the arid area of Central Asia (CA, including
Kyrgyzstan, Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan and the
Xinjiang province of China). The oasis, an intrazonal landscape, consists
mainly of irrigated agricultural lands (> 90%) (Zhang et al., 2017), and
is the essence of arid areas and the main human settlements and socio-
economic activity area. Since the 1950s, the oasis has expanded sig-
nificantly, from the conversion of natural grass and bare land, accom-
panied by a series of environmental problems such as the desiccation of
the Aral Sea, the scarcity of water resources, soil erosion and saliniza-
tion, dust storms and desertification (Micklin, 1988). However, with the
implication of the Belt and Road initiative in this region, the oasis ex-
pansion might be enhanced in the future. Moreover, the ecosystems in
this region are very fragile and sensitive to climate change and human
activities. Thus, it's very urgent to explore how the historical human
activities, especially the oasis expansion, impact the local climate.

Using long-term meteorological and hydrological stations, Deng
et al. (2015) found that summer (JJA) precipitation account for ap-
proximately 66% of the annual precipitation in the Tianshan Moun-
tains, including the oasis (< 1500m), the middle (1500–2200m) and
high mountain regions (> 2200m). They found that in summer, the
precipitation presented a decreasing trend for the past 50 years, while
the middle mountains precipitation experienced an increasing trend.
Similar results are found by Yao et al. (2016). They found that when
grouping the stations' altitude using 500m interval, the precipitation
trend increases significantly with elevation with the highest correlation
being from 1500 to 2000m. Based on observations data, other studies
have investigated the precipitations trend in the Tianshan Mountains.
Zhang et al. (2009) found that increasing trend in annual precipitation
are found for middle to high elevation stations. Guo and Li (2015)
found that precipitation has experienced an increasing trend with an
acceleration of the trend since the middle of 1980s. They found that the
precipitation increased coherently in the north slope of the middle
Tianshan mountains with elevation in the range between 1500 and
2500m. Based on meteorological stations records during 1960–2016,
Xu et al. (2018) found that Tianshan mountains experienced a wetting
trend with an average wet rate of 5.82mm/decade. The increased
magnitude of annual precipitation were highest in the elevation range
between 1500 and 2000m (9.22mm/decade) and the lowest for ele-
vation below 500m (3.45mm/decade). During the summer, the ele-
vation dependency of the increasing trend was the highest.

Most of the above mentioned studies have tried to link the pre-
cipitation trend to large scale circulations. However, how the oasis
expansion might alter the local and regional precipitation trend, has
never been explored. The aim of this study is, therefore, to explore to
what extent the historical oasis expansion during the period 1986–2016
has affected the local summer precipitation trend using regional climate
model simulations at high spatial resolution.

2. Methods

2.1. Study area

The Tianshan Mountains, located in the hinterland of CA, is the
largest mountain range in the world arid area. It lies in the central part
of Xinjiang province and is surrounded by two deserts, Gurbantunggut
desert in the north and Taklimakan desert in the south, forming several
typical MODSs, including the MODS in the north slope of the Tianshan
Mountains (see Fig. 1a) which is the focus of our study area. With the
rapid development of the economy and the increase of the population,
the oasis area in the north slope of Tianshan Mountains has increased
by>4 times since the 1950s, resulting in a significant LULCC (Zhang
et al., 2017). The study area is situated between 84°50′E and 89°08′E

and 46°15′N and 43°18′N, with a total area of 99,792 km2 (Fig. 1a). This
region is a typical continental arid and semi-arid climate, with a mean
annual temperature around 6 °C and an annual precipitation amount
around 220mm. In the past 50 years, the climate in this region has
experienced a warmer and wetter trend (Hu et al., 2013; Li et al., 2011;
Xu et al., 2010), which will continue in the future according to future
climate projections (Luo et al., 2018). Our study area contains 2 oases
covering an area of 220 km×75 km and 40 km×25 km (Fig. 1a).

2.2. Model and experiments

The climate model ALARO, is a new version of the Aire Limitée
Adaptation Dynamique Développement International (ALADIN) model
with updated physical parameterizations to enable simulations at
3–10 km mesh-size (Termonia et al., 2018), has been used at the Royal
Meteorological Institute of Belgium for the operational numerical
weather prediction applications since 2010, and for regional climate
modeling as well (Berckmans et al., 2017; De Troch et al., 2013; Giot
et al., 2016; Hamdi et al., 2012; Termonia et al., 2018). The land sur-
face model SURFEX, which consists of the ISBA (Interactions between
Soil, Biosphere and Atmosphere) (Noilhan and Planton, 1989) scheme
for natural surfaces and the TEB (Town Energy Balance) (Masson,
2000) scheme for urban surfaces, has been implemented in the ALARO-
0 model (Hamdi et al., 2014b). The combined ALARO-SURFEX model
has shown its potential for representing the regional climate and land
surface processes (Berckmans et al., 2017; Hamdi et al., 2014a, 2016;
Hamdi et al., 2015).

The model is driven by the global reanalysis dataset ERA-Interim
and run at a horizontal resolution of 50 km with 169× 117 grid points
within a domain that encompasses most of Asia (D1 in Fig. 1c). Then,
the outputs were used to drive the ALARO-SURFEX model on a smaller
domain nested within the outer domain (D1) at a horizontal resolution
of 4 km with 500× 500 grid points (D2 in Fig. 1b and c). This inner
domain (D2) covers the three Mountains that are Altai Mountains in the
north, Tianshan Mountains in the central and Kunlun Mountains in the
south of Xinjiang province, and the north part of the Tibetan Plateau in
order to capture the synoptic-scale features. Our main region of interest
is located in the central area of the inner domain (Fig. 1a and b).

During the 31 summers (1986–2016), two simulations have been
performed: (i) CTL where the land use/cover presents the current si-
tuation of the oasis areas in the study region and (ii) NO_OASIS where
the oasis areas have been replaced by the surrounding desert. The dif-
ference CTL-NO_OASIS is used to detect the potential effect of oasis
expansion on the summer precipitation. In order to make the simulated
oasis expansion effects more confident, we use the student-test to cal-
culate the significance of oasis expansion effects on each grid point and
only present the grid points with p < 0.001.

2.3. Data

The initial and lateral boundary conditions for the meteorological
fields are derived from the global atmospheric reanalysis product ERA-
Interim at 6-h interval (Dee et al., 2011). The land cover data and
corresponding land surface parameters for the SURFEX model is pro-
vided by the ECOCLIMAP dataset (Masson et al., 2003), in which the
global 1 km resolution land cover data is divided into 573 types (243
types for version I) based on satellite observations (Faroux et al., 2013).
We updated the land cover data of ECOCLIMAP using the land cover
data generated by the Xinjiang Institute of Ecology and Geography
(XIEG), Chinese Academy of Sciences (Fig. 2) (Wang et al., 2014).

3. Results

3.1. Spatial patterns of oasis expansion effects on precipitation

Fig. 3a presents the oasis expansion effect on the averaged summer
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precipitation during the period 1981–2016 computed from the differ-
ence CTL-NO_OASIS. Only grid point with a statistically significant
change are shown in the plot. As seen from Fig. 3, the oasis expansion
enhances significantly the summer precipitation in the mountain areas
for the grid points with elevation mostly above 1300m and below
2800m. The results show a slight decrease of the summer precipitations
for grid points with elevation higher than 3000m, and almost a neutral
effect in the desert area. Within the oasis area, the results show a sig-
nificant increase in precipitation in some areas but a neutral effect for
most parts. The average positive effects of oasis expansion in the oasis
and the middle mountain areas are 3.20mm and 8.00mm, respectively,
while the average negative effect in the high mountain areas is
−1.45mm.

We further explored the oasis expansion effects on both convective
and large scale precipitation as shown in Fig. 3b and Fig. 3c. It is clearly
seen that the oasis expansion has a greater effect on the summer con-
vective precipitation which accounts for 76.5% of the total precipita-
tion. The pattern of the impact on large scale precipitation is similar to
the convective precipitation but with much smaller values with an
average value of 1.69mm. There is also more large scale precipitation
impact over the oasis areas and on some part of the desert.

In order to further illustrate the different impact of the oasis ex-
pansion on both convective and large scale precipitation, we present in
Fig. 3d the summer precipitation computed from the difference CTL-
NO_OASIS as a function of the elevation in each grid point where a
statistically significant difference is found. In agreement with the

Fig. 1. The location of our study area (a), the topography of Xinjiang province (b) and the two-nested ALARO modeling domains and Central Asia (CA) regions (c).
The shaded contour represents altitude.
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previous results, the oasis expansion produces mainly an increase of
summer convective and large scale precipitation for grid points with
elevation below 2800m. For grid point with elevation between 2800m
and 4000m, there is both a slight increase and decrease of the con-
vective and large scale precipitation. For grid point above 4000m,
there is a slight decrease in both precipitation types. As expected, the
oasis expansion effect on large scale precipitation did not increase with
the elevation and stays below 5mm for almost all grid points. However,
the convective precipitation increases with elevation with a difference
up to 32mm for a grid point with 2000m elevation. The summer mean
convective precipitation induced by the oasis expansion impact is
mostly between 5mm and 15mm for grid points located below 1800m
of altitude.

3.2. Temporal patterns of oasis expansion effects on precipitation

Fig. 4 shows the hourly summer convective and large scale pre-
cipitation during the period 1981–2016 computed from the difference
CTL-NO_OASIS. During nighttime, the oasis expansion effect on both
convective and large scale precipitation is similar and stay below
0.2 mm. From 1200 (local time, LT) and up to 1600 LT, the convective
precipitation is increasing reaching a maximum of 0.42mm at 1600 LT
while the impact on large scale precipitation is very small and stay
below 0.1mm up to 2300 LT. From 1700 LT until 2300 LT, the impact
of the oasis expansion on convective precipitation decreases with time.

In Fig. 5, we present the impact of oasis expansion on a rainfall
event on July 17th, 2007. Fig. 5a shows the spatial pattern of wind
speed and specific humidity at the lowest model level at 2000 LT
computed by the CTR simulation and Fig. 5b presents the specific

humidity cross section computed from the difference CTL-NO_OASIS
along AB at the same time. Latent fluxes were larger over the oasis areas
with the CTR simulation with a maximum value of 400 w m−2 at 1500
LT (not shown). While sensible fluxes were lower with a maximum
decrease of 120 w m−2. The oasis expansion increases the evapo-
transpiration that enhances the moisture supply to the lower boundary
layer (see Fig. 5a). Within the MODS, the mountain-plain wind circu-
lation between the oasis and the mountain areas induces the advection
of air with additional moisture (see Fig. 5b) and moist static energy (not
shown) from the oasis areas to the mountain regions which is more
convectively favorable and triggers, therefore, more orographic pre-
cipitation in the middle mountain regions.

4. Conclusion and discussions

We investigated the oasis expansion effects on local summer pre-
cipitation in the north slope of Tianshan Mountains, China by per-
forming a sensitivity experiment for 31 summers during the period
1986–2016. In order to detect the maximum effect of oasis expansion
on the summer precipitation, two simulations are performed: (i) CTL
where the land use/cover presents the current situation of the oasis
areas in the study region and (ii) NO_OASIS where the oasis areas have
been replaced by the surrounding desert. The results show that the oasis
expansion increases the summer precipitation mainly in the middle
mountain regions and has only a small effect over the oasis regions
itself. These results indicate that the oasis expansion could attribute
significantly to the recent finding from observational studies about the
increasing trend of precipitation in the middle Tianshan Mountains.

We further explored the oasis expansion effects on convective and

Fig. 2. The default land cover data from ECOCLIMAP (a) and the updated land cover data using the XIEG land cover database (b). 2: Inland waters; 4: Bare land; 5:
Rocks; 6: Permanent snow and ice; 7: Urban and built-up; 11: Boreal Evergreen Needle leaf Forest; 24: Asian boreal Deciduous Needleleaf Forest; 31: North
Hemisphere (NH) Subpolar Mixed Forest; 32: NH Humid subtropical Mixed Forest; 33: NH Continental Mixed Forest; 41: NH Subpolar Wood Land; 42: NH
Continental Wood Land; 59: NH Subpolar Wooded Grassland; 60: NH Continental Wooded Grassland; 74: Asia polar Closed Shrubland; 75: Asia continental Closed
Shrubland; 80: NH arid Open Shrubland; 84: Asia dry tropical Open Shrubland; 85: NH Polar Open Shrubland; 86: N-America Subpolar Open Shrubland; 99: NH
semiarid Continental Grassland; 100: Asia Subpolar Grassland; 101: Asia humid Continental Grassland; 102: Asia semiarid tropical Grassland; 113: N-Amer., Asia
semiarid continental Crops; 114: Asia humid continental Crops; 116: Asia subpolar Crops; 123: Bare soil with sparse polar vegetation; 125: Subpolar wetlands; 159:
Mineral extraction, construction sites; 175: Irrigated crops.
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large scale precipitation. The results indicate that the oasis expansion
affects mainly the convective precipitation. The advection of air with
additional moisture and moist static energy from the oasis areas to the
mountains due to the mountain/plain circulation system during the day
triggers the orographic precipitation in the middle mountain regions

(Chase et al., 1999).
In the arid CA, water is valuable and essential for the local eco-

systems and society. Within the mountains-oasis-desert system, the
mountains area has a significant importance for the surviving of the
oasis and determines the scale of the oasis since it acts as the water
source for the oasis (Chen and Luo, 2008). The oasis expansion in-
creases the summer precipitation in the middle mountains area, which
will increase the runoff from the mountains. So, there is a positive
feedback between the oasis expansion and the mountainous precipita-
tion. Although, to a certain extent, this positive feedback could alleviate
the water shortage in the oasis, the melt water from snow and glaciers
in the high mountains is much more important for the water security for
the long time (Duethmann et al., 2015).

The oasis expansion is expected to continue in the future with the
development of economy and technology under the promotion of the
Belt and Road initiative. Thus, the oasis expansion will affect the local
climate. Moreover, the ecosystems in arid CA are very fragile and
sensitive to the climate change and human activities (Han et al., 2016;
Jiang et al., 2019; Li et al., 2018; Li et al., 2015). How to keep the
stability of the ecosystems and develop the oasis in a sustainable way
are very crucial under the limitation of the water resource.

Fig. 3. The averaged summer precipitation during the period 1981–2016 computed from the difference CTL-NO_OASIS (a) total, (b) convective, (c) large scale. (d)
The precipitation difference CTL-NO_OASIS as a function of the elevation in each grid point where a statistically significant difference is found. Only grid point with a
statistically significant change (p < 0.001) are shown in the (a), (b) and (c) plots.

Fig. 4. The hourly summer total, convective and large scale precipitation
averaged during the period 1981–2016 computed from the difference CTL-
NO_OASIS.
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