58,859 research outputs found

    Adaptive Predictive Control Using Neural Network for a Class of Pure-feedback Systems in Discrete-time

    Get PDF
    10.1109/TNN.2008.2000446IEEE Transactions on Neural Networks1991599-1614ITNN

    High Heritability Is Compatible with the Broad Distribution of Set Point Viral Load in HIV Carriers.

    Get PDF
    Set point viral load in HIV patients ranges over several orders of magnitude and is a key determinant of disease progression in HIV. A number of recent studies have reported high heritability of set point viral load implying that viral genetic factors contribute substantially to the overall variation in viral load. The high heritability is surprising given the diversity of host factors associated with controlling viral infection. Here we develop an analytical model that describes the temporal changes of the distribution of set point viral load as a function of heritability. This model shows that high heritability is the most parsimonious explanation for the observed variance of set point viral load. Our results thus not only reinforce the credibility of previous estimates of heritability but also shed new light onto mechanisms of viral pathogenesis

    [Colored solutions of Yang-Baxter equation from representations of U_{q}gl(2)]

    Full text link
    We study the Hopf algebra structure and the highest weight representation of a multiparameter version of Uqgl(2)U_{q}gl(2). The commutation relations as well as other Hopf algebra maps are explicitly given. We show that the multiparameter universal R{\cal R} matrix can be constructed directly as a quantum double intertwiner, without using Reshetikhin's transformation. An interesting feature automatically appears in the representation theory: it can be divided into two types, one for generic qq, the other for qq being a root of unity. When applying the representation theory to the multiparameter universal R{\cal R} matrix, the so called standard and nonstandard colored solutions R(μ,ν;μ,ν)R(\mu,\nu; {\mu}', {\nu}') of the Yang-Baxter equation is obtained.Comment: [14]pages, latex, no figure

    Floquet Topological Polaritons in Semiconductor Microcavities

    Full text link
    We propose and model Floquet topological polaritons in semiconductor microcavities, using the interference of frequency detuned coherent fields to provide a time periodic potential. For arbitrarily weak field strength, where the Floquet frequency is larger than the relevant bandwidth of the system, a Chern insulator is obtained. As the field strength is increased, a topological phase transition is observed with an unpaired Dirac cone proclaiming the anomalous Floquet topological insulator. As the relevant bandwidth increases even further, an exotic Chern insulator with flat band is observed with unpaired Dirac cone at the second critical point. Considering the polariton spin degree of freedom, we find that the choice of field polarization allows oppositely polarized polaritons to either co-propagate or counter-propagate in chiral edge states.Comment: Accepted by PR

    Anti-chiral edge states in an exciton polariton strip

    Full text link
    We present a scheme to obtain anti-chiral edge states in an exciton-polariton honeycomb lattice with strip geometry, where the modes corresponding to both edges propagate in the same direction. Under resonant pumping the effect of a polariton condensate with nonzero velocity in one linear polarization is predicted to tilt the dispersion of polaritons in the other, which results in an energy shift between two Dirac cones and the otherwise flat edge states become tilted. Our simulations show that due to the spatial separation from the bulk modes the edge modes are robust against disorder.Comment: 6 pages, 5 figure

    Violating Bell Inequalities Maximally for Two dd-Dimensional Systems

    Full text link
    We investigate the maximal violation of Bell inequalities for two dd-dimensional systems by using the method of Bell operator. The maximal violation corresponds to the maximal eigenvalue of the Bell operator matrix. The eigenvectors corresponding to these eigenvalues are described by asymmetric entangled states. We estimate the maximum value of the eigenvalue for large dimension. A family of elegant entangled states Ψ>app|\Psi>_{\rm app} that violate Bell inequality more strongly than the maximally entangled state but are somewhat close to these eigenvectors is presented. These approximate states can potentially be useful for quantum cryptography as well as many other important fields of quantum information.Comment: 6 pages, 1 figure. Revised versio

    Unveiling Su Aurigae in the near Infrared: New high spatial resolution results using Adaptive Optics

    Full text link
    We present here new results on circumstellar nebulosity around SU Aurigae, a T-Tauri star of about 2 solar mass and 5 Myrs old at 152 pc in the J, H and K bands using high resolution adaptive optics imaging (0\farcs30) with the Penn state IR Imaging Spectrograph (PIRIS) at the 100 inch Mt. Wilson telescope. A comparison with HST STIS optical (0.2 to 1.1 micron) images shows that the orientation of the circumstellar nebulosity in the near-IR extends from PAs 210 to 270 degrees in H and K bands and up to 300 degrees in the J band. We call the circumstellar nebulosity seen between 210 to 270 degrees as 'IR nebulosity'. We find that the IR nebulosity (which extends up to 3.5 arcsecs in J band and 2.5 arcsecs in the K band) is due to scattered light from the central star. The IR nebulosity is either a cavity formed by the stellar outflows or part of the circumstellar disk. We present a schematic 3-dimensional geometrical model of the disk and jet of SU Aur based on STIS and our near-IR observations. According to this model the IR nebulosity is a part of the circumstellar disk seen at high inclination angles. The extension of the IR nebulosity is consistent with estimates of the disk diameter of 50 to 400 AU in radius, from earlier mm, K band interferometric observations and SED fittings.Comment: Accepted for publications in the Astronomical Journal, to appear in the May issue of the Journa
    corecore