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Abstract
Set point viral load in HIV patients ranges over several orders of magnitude and is a key
determinant of disease progression in HIV. A number of recent studies have reported high
heritability of set point viral load implying that viral genetic factors contribute substantially to
the overall variation in viral load. The high heritability is surprising given the diversity of host
factors associated with controlling viral infection. Here we develop an analytical model that
describes the temporal changes of the distribution of set point viral load as a function of heri-
tability. This model shows that high heritability is the most parsimonious explanation for the
observed variance of set point viral load. Our results thus not only reinforce the credibility of
previous estimates of heritability but also shed new light onto mechanisms of
viral pathogenesis.

Author Summary
Following an initial peak in viremia, the viral load in HIV infected patients settles down to
a set point which remains more or less stable during chronic HIV infection. This set point
viral load is one of the key factors determining the rate of disease progression. The extent
to which it is determined by the virus versus host genetics is thus central to developing a
better understanding of disease progression. Here we develop an analytical model that de-
scribes the changes of the distribution of set point viral load in the HIV carrier population
over a full cycle of transmission. Applying this model to patient data we find that the most
parsimonious explanation for the observed large variation of set point viral load across
HIV patients is that set point viral load is highly heritable from donors to recipients. This
implies that set point viral load is to a considerable extent under the genetic control of
the virus.
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Introduction
The time course of viral load in HIV infected patients follows a characteristic pattern. During
primary infection the viral load rapidly grows to very high levels. The peak viremia is attained
within the first few weeks of infection. Thereafter the viral load declines rapidly over a period
of several months and eventually settles down at a much lower level referred to as the viral set
point. Set point viral load (spVL) is a central characteristic of the course of the disease. Firstly,
the virus load measurements do fluctuate in patients, the time average of the viral load remains
remarkably close to the spVL in most of patients over the time scale of several years [1, 2]. Sec-
ondly, higher spVL is associated with faster disease progression [3].

The stability of spVL within patients is in strong contrast to the enormous variation in spVL
observed between patients. While variation in spVL between patients ranges over 3–4 orders of
magnitude [3–6], the time trend over longitudinal viral load measurements typically changes
by less then 0.1 log per year [1, 2]. Given that spVL is a key predictor of disease progression,
there is considerable interest in identifying the host and viral genetic factors underlying the
variation in spVL.

A well known example for the influence of naturally occurring variation in human genetic
factors on viral load is the Δ32 deletion in the CCR5 gene [7]. Moreover polymorphisms in
HLA-B and C alleles have been associated with variance in virus load and genome-wide associ-
ation studies (GWAS) showed that about 20% of the variance in log spVL can be attributed to
specific single nucleotide polymorphisms [8–11]. 20% is likely a lower bound for the overall
contribution of host genetic factors, because GWAS generally suffer from the problem that
they can only identify common genetic variants with strong effects and do not account for
epistatic effects between host genes [12].

Natural variation in the virus can also affect spVL. For example the transmission of a nef-
deficient virus through a contaminated blood sample resulted in a low viral load in the recipi-
ents [13]. Moreover, several studies have reported a correlation between predicted replicative
capacity and viral load [14–16]. As this prediction is based only on the viral genotype a patient
carries, this implies that naturally occurring variation in viruses does affect viral load. A num-
ber of recent studies attempted to estimate the contribution of the viral genotype to the varia-
tion in spVL by quantifying the statistical association of viral load between donors and
recipients either directly in donor-recipient pairs or through phylogenetic analysis [17–22]; for
reviews see Müller et al. [23] and Fraser et al. [24]. A meta-analysis of previously published
donor-recipient studies correcting for various co-factors such as age and sex yielded a heritabil-
ity of 33% with a 95% confidence interval of 20–46% [24]. The two studies that inferred herita-
bility based on phylogenetic methods provided the most extreme estimates with 5.7% reported
by Hodcroft et al. [22] and 59% reported by Alizon et al. [21]. While the phylogenetic ap-
proaches have an advantage over the donor-recipient based approaches in that they can use
much larger patient populations, it is currently unclear to what extent the underlying assump-
tions of the phylogenetic approaches of no selection and high frequency of sampling affect the
robustness of these results.

The discrepant estimates call for a better quantitative understanding of the underlying
factors determining heritability of log spVL in HIV. To this end we develop here a quantitative
model that describes the change of the distribution of log spVL in a patient population in rela-
tion to heritability over a full transmission cycle. The model extends the approach of Shirreff
et al. [25] and is similar in spirit to the integral projection models in ecology that are used to
describe the temporal changes of distributions of a continuous phenotypic trait in populations
[26–28]. In contrast to many applications in ecology, the application to distributions of log
spVL has the advantage that all relevant processes and populations for which data are available,
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are numerically well approximated by a Gaussian function. This fact enables us to obtain com-
plete analytical understanding of how spVL changes through time based on a model parame-
trized by available data.

Results
We consider the change of the spVL distribution over one full reproduction cycle on the epide-
miological level, i.e. from the current to the next generation of patients. We divide the patient
population into “carriers” (HIV infected individuals prior to selection for transmission), “do-
nors” (individuals that have been selected for transmission) and “recipients” (individuals that
have just been infected by donors). Furthermore, we divide the reproduction cycle into three
steps: (i) selection of donors from the carriers with replacement according to their transmission
potential, (ii) transmission from donors to recipients, and (iii) intrahost evolution of the virus
from the start of infection to the next transmission. Finally, we explicitly distinguish between
factors contributing to set point viral load with regard to being transmissible (i.e. viral genetic
factors) versus being non-transmissible (i.e. host genetic factors, environmental factors, or any
interaction between host, virus, and the environment). A schematic overview over the effects of
these steps on the distribution of log spVL is shown in Fig. 1.

In the Supplementary Materials we show how the change of the spVL distribution can be
computed for any distribution over a full transmission cycle. If all populations and processes
are well approximated by Gaussian functions, then an approximation to the resulting log spVL
distributions can be computed analytically (see Methods and Supplementary Materials). As-
suming that the population is in equilibrium we obtain for the mean, M̃C, variance, ṼC, and
heritability, h2, the following expressions:

~MC ¼ mo þ mi 1þ ne þ no
~VC # ne

! "
; ð1Þ

~VC ¼ nt þ ni
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ne þ no
nt þ ni
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þ ne; ð2Þ

h2 ¼ 1# ne
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: ð3Þ

Here the parameters μo and νo characterize the transmission potential [6], i.e. the overall proba-
bility of a patient to transmit the infection as a function of log spVL (Fig. 1(o)–(i)). This trans-
mission potential is given by the product of the rate of transmission per contact and the disease
duration. As the former increases and the latter decrease with increasing spVL, the transmis-
sion potential has a maximum at intermediate levels of spVL [6]. The parameter νe gives the
variance of the contribution of host/environmental effects on log spVL. The parameter νt de-
scribes the variance due to the bottleneck at transmission from donor to recipient, as a founder
strain is selected randomly from the diverse population in the donor (Fig. 1(i)–(ii)). The pa-
rameters μi and νi describe the mean and variance of the contribution of intrahost evolution to
log spVL (Fig. 1(ii)–(iii)).

Our model assumes that the bottleneck at transmission is neutral with regard to selection
on set point viral load. Note, that the assumption is without loss of generality. This is important
because there is evidence for selection at transmission [29], although it is unclear whether se-
lection acts on spVL. Any selective effect at transmission, however, can be subsumed into the
parameter μi. Hence, the effect of selection is effectively incorporated in our model.
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The parameter for the mean contribution by the host/environment, μe, does not appear in
equations 1 or 2. This is because the equations refer to the phenotypic value of spVL, i.e. the
sum of the genetic contributions of the virus and the contributions from the host/environment.
Any large environmental/host effect on the mean can always be compensated by correspond-
ingly strong genetic effect of the virus on the mean but with opposite sign.

The above results are applicable if, (i) if the population is approximately in equilibrium, and
(ii) all populations and processes are numerically well approximated by Gaussian functions.

Assumption (i) has been discussed in detail previously [6, 25, 30, 31]. In essence, this as-
sumption is supported by three observations. Firstly, the mean of the spVL distribution coin-
cides with the optimum of the transmission potential (see Fig. 2 and Fraser et al. [6]). Secondly,
the rate of change of spVL has decreased over the last 25 years [31]. Thirdly, the rate of evolu-
tion is sufficiently rapid such that a spVL that is optimal for transmission could have evolved
over the course of the epidemic [25]. These findings suggest that the distribution of set point

Fig 1. Graphical example of the change in the distribution of log spVL in the population over one
reproduction cycle.During one full reproduction cycle, the distribution goes through the following steps: (o)
The log spVL distribution within a population follow a Gaussian function with meanMC and variance VC (red
curve). The transmission potential (blue dotted line) selects a subset of this population as donors (see
Equation 5). (i) The transmission potential selects donors from the carrier population in (o) with meanMD that
lies between the mean of the carriers,MC, and the mean of the transmission potential, μo. The resulting
variance in log spVL in the selected donors is smaller than in the carrier population (see Equation 7). (ii) The
selected donors transmit to new hosts, thus randomizing the host/environmental contributions and lowering
the population mean log spVL and increasing the population variance. The variance is further increased by a
transmission bottleneck and sampling effect on the level of the individual donors.(iii) Within-host evolution of
log spVL may further increase or decrease the population mean, while always increasing or not affecting the
variance. This completes a full reproduction cycle. In equilibrium, the individual changes in mean and
variance in stages (i), (ii) and (iii) is such that the overall change in mean and variance from stage (o) to (iii)
is zero.

doi:10.1371/journal.ppat.1004634.g001
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viral load is indeed approximately in equilibrium, which in turn makes it is plausible to assume
that the environmental and genetic factors determining set point viral load are also
in equilibrium.

Regarding assumption (ii), we note that a Gaussian function describes a distribution or pro-
cess by a main effect (mean) and some variational noise (variance). Thus in absence of any bet-
ter knowledge, a Gaussian distribution is a natural starting point to describe any process and
simply represents a second order approximation to an unknown distribution. We can assess
the validity of describing the distributions of spVL in carriers and the transmission potential
graphically using available data. Inspection of Fig. 2A and Figure S1 in Supplementary S1 Text
shows that the viral load amongst carriers is indeed numerically well approximated by a Gauss-
ian with mean log spVL,MC ! 4.5, and variance in log spVL, VC! 0.5. Also the fit of a Gauss-
ian to the transmission potential (see Fig. 2B) is a very good approximation (mean μo ! 4.6
and variance νo ! 1.0), even though the transmission potential as estimated by Fraser et al. [6]
is slightly right-skewed.

There are no data to inform the shape of the processes of transmission and intrahost evolu-
tion. Using a description that has a mean effect with some variation around this mean is natu-
ral. Nonetheless, we test the effect of numerical deviations from a Gaussian with the following
simulations. Firstly, we use the exact right-skewed transmission potential as given by Fraser
et al. [6]. The analytical approximations for the distribution of the population in equilibrium
remain excellent when the substantial deviations of the transmission potential from a Gaussian

Fig 2. Viral load distributions and transmission potential estimated from patient cohorts as extracted
from the corresponding graphs in Fraser et al. [6]. (A) The viral load distributions in the a Zambian and a
Dutch cohort (see Fraser et al. [6]). The lines correspond to the best fits of a Gaussian to the distribution of log
spVL. The null hypothesis that log spVL is normally distributed cannot be rejected based on a test that tests
whether the residuals between model and fit themselves are normally distributed. The estimated mean and
standard deviation are 4.74 and 0.61 for the Zambian data (red) and 4.35 and 0.47 for the Amsterdam data
(blue). (B) The transmission probability according to the functions for transmissibility and duration of disease
as a function of viral load as provided in Fraser et al. [6]. The grey circles and lines represent the mean and
95% confidence interval of the transmission potential as estimated from the Zambian and Amsterdam cohorts
by Fraser et al. [6]. The blue line represents the corresponding theoretically derived transmission potential as
provided by Fraser et al. [6]. The red line corresponds to the best fit of a log Gaussian to the estimated
transmission potential. The parameters of the fitted log Gaussian are μo = 4.64±0.021 and νo = 0.96±0.025
(estimate ± standard deviation).

doi:10.1371/journal.ppat.1004634.g002
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are incorporated (see Figure S2). Secondly, we study the robustness towards deviations from
Gaussian functions in the processes describing intrahost evolution and the transmission bottle-
neck. Even when both processes are strongly skewed, the analytical approximations for mean
and variance are excellent (typically less than 2% deviation, see Figure S3 in Supplementary
S1 Text).

To assess what heritability values are compatible with the observed mean and variance of
log SPVL in the carrier population we take a simple approach that is in essence Approximate
Bayesian Computing with rejection sampling. To this end we define plausible prior distribu-
tions for the parameters of the model. Sampling randomly from the priors we determine the re-
sulting means and variances of log spVL in carriers and reject sets of parameters that lead to
means and variances outside a defined permissible range. The set of accepted parameters gives
the posterior distribution.

For the range of permissible mean log spVL we assume 4< M̃C< 5, which is compatible
but somewhat larger than the observed range in the studies reported by Fraser et al. [6] and
Geskus et al. [5] (see Fig. 2A and Supplementary Materials, Section E). For the permissible
range of variances of log spVL we assume that 0.3< ṼC< 0.8, which again is compatible but
somewhat larger than the values reported by Fraser et al. [6] and Geskus et al. [5] (see Supple-
mentary Materials, Section E).

We use uniform priors for all parameters. The parameters μo and νo, which describe mean
and variance of the transmission potential, have thus far only been estimated only by a single
peer reviewed study (Fraser et al. [6] and Fig. 2B; see also [32]). To account for uncertainty in
the estimates of these parameters we use 4< μo< 5 and 0.5< νo < 1.5. Estimates for remain-
ing parameters cannot be easily derived from the existing literature. To account for uncertainty
in these parameters we assume 0< νe < 1; −1< μi< 1; 0< νi< 0.3 and 0< νt < 0.3.

Fig. 3 shows the posterior parameter distribution from the rejection sampling. Different col-
ors in the scatter plots indicate different levels of mean heritability at given parameter combi-
nations. The contour lines show the density of posterior distribution. The key result shown in

Fig 3. Posterior distribution of parameters from the rejection sampler.We report pairwise scatterplots of the parameters μi, νe and the compound
parameter νi + νt, since these two parameters only appear as a sum in all equations for the mean, variance and heritability. 107 random sets of parameter
values are sampled randomly from the uniform priors described by the ranges on the x and y axes. Around 1.9% of the randomly generated parameter
combinations yield values for mean and variance of log spVL that are compatible with the acceptance criterion 4< M̃C < 5, 0.3< ṼC < 0.8. The contour lines
show the two-dimensional kernel density estimate of the posterior sample. The colours reflect the mean heritability of binned parameter combinations and are
stacked such that points with lower heritability lie on top of points with higher heritability. The small plots to the top and right of the scatterplots show the
posterior density estimate along a single parameter dimension, as well as the mean (black dot), and 50% (boxes) and 95% quantiles (lines) of heritabilities
along those parameter dimensions. Most of the probability mass occurs at low values of μi and νe.

doi:10.1371/journal.ppat.1004634.g003
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the figure is that the majority of accepted parameter values result in high values of heritability
(purple to orange color at contour lines of highest posterior densities). While low values of her-
itability are also compatible with the observed mean and variance of log spVL, they occur rarely
in the posterior sample and are at the edges of the prior distributions (red to blue areas). The
center of mass of the posterior sample is in areas with high heritability, higher in fact then what
would seem compatible with current estimates of heritability and host genetic factors. There
are two factors not included in this analysis: measurement error of spVL and prior knowledge
of the host contribution to spVL. Increasing the measurement accuracy of spVL would increase
heritability estimates based on both donor-recipient pairs and phylogenetic inference. Incorpo-
rating prior knowledge of the host genetic contribution would set an upper bound on the esti-
mates of heritability in our analysis. Thus accounting for these two factors bring the center of
mass of the heritability distribution closer to the measured values of heritability.

The figure also highlights that generally wider priors would not change the posterior distri-
bution because parameter values at the upper end of priors are never accepted. The change of
the mean capacity of the virus to induce spVL through intrahost evolution, μi, is restricted to
values smaller than 0.6 and decreases with increasing variance generated by the host/environ-
ment effects, νe. Increasing νe corresponds to decreasing heritability (see eq. 3) and thus high
levels of μi require high levels of heritability. The center of mass of the posterior sample sug-
gests that the most parsimonious explanation of the observed mean and variance of log spVL
implies both small intrahost evolution and high heritability.

One criticism leveled against the transmission potential as quantified in [6] is that it does
not appropriately reflect transmissions occuring during the acute or the AIDS phase. In the
Supplementary Material, Section F.3, we show that our quantitative results are robust towards
using a corrected transmission potential.

Discussion
The above analysis shows that the most parsimonious explanation of the observed distribution
of spVL in HIV carrier populations requires high heritability of spVL. Although low heritabili-
ty values are also compatible with the observed distribution of spVL in HIV carrier popula-
tions, parameter combinations resulting in these low values have a small probability and occur
at the edge of the realistic parameter range. The skepticism with which the estimated heritabili-
ty values have been met in the field suggests that the general expectation is that heritability of
spVL should be low. In contrast, our analysis shows that high heritability values are not only
compatible with, but are also the more parsimonious explanation of the observed distribution
in spVL in HIV carrier populations.

Low heritability only occurs if the processes of intrahost evolution and the transmission bot-
tleneck have a weak effect on spVL, i.e. if the parameters μi, νi and νt are small. An intuition
can be obtained by noting that in equilibrium the variance generating and variance eliminating
processes balance out. The transmission potential only exerts weak selection on log spVL and
therefore only marginally reduces variance. The decrease of variance by selection for transmis-
sion has to be compensated by an increase in variance by intrahost evolution and the transmis-
sion bottleneck. For too low heritability, the genetic variance generated by intrahost evolution
and transmission bottlenecks would overwhelm the reduction of variance due to selection by
the transmission potential. While there are to our knowledge no data that allow to estimate the
variance generated at transmission, νt, the posterior distributions of μi and νi are broadly com-
patible with the observed changes of virus load within patients [1, 2, 33].

Taken together our analysis suggests that the most parsimonious explanation of the distri-
bution of log spVL is high h2 but low νt, μi and νi. Hence, heritability is high while the processes
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of intrahost evolution and transmission bottleneck have a small effect on the capacity of the
virus to modulate log spVL. High heritability implies a substantial genetic control of the log
spVL by the virus. The observation that at the same time the contribution of intrahost evolu-
tion to spVL is small raises an interesting question: How can a strongly heritable trait show lit-
tle intrahost evolution? Given the otherwise ample evidence for rapid intrahost evolution of
HIV such as escape from drugs or the immune response, the absences of intrahost evolution of
spVL is surprising. Generally a trait is expected to respond to selection, if (i) the trait is herita-
ble, (ii) there is phenotypic variation of the trait in a population, and (iii) the trait is linked to
fitness. That spVL is heritable has been reported previously [23, 24] and our analysis reinforces
the credibility of these findings. That there is phenotypic variation in the control of spVL by
the virus is plausible given the large genetic variation of the virus population within an individ-
ual. What remains is whether it is conceivable that the capacity of a viral genotype to induce
spVL is only weakly linked to fitness. One hypothesis that could reconcile high heritability with
little intrahost evolution is that variation in viral load between patients is in part due to virus-
induced activation of target cells. Difference in activation rate of target cells has previously
been argued to account for a substantial part of the variation in viral load [4]. Furthermore, if
target cell activation is at least partially under the control of the virus, then this control may in-
deed be weakly linked to intrahost fitness. If the target cell activation is systemic (i.e. not locally
confined to the inducing virus) then increased target cell activation increases the pool of sus-
ceptible cells, but the benefit of increased target cell activation is not confined to the producer
virus. As a result selection for virus induced activation rate is expected to be neutral or nearly
neutral [34]. Indeed, an explicit model of the evolution of log spVL for a virus induced control
of target cell activation can reconcile high heritability with absence of intrahost evolution [35].

Our modeling approach is based on describing how the distribution of a continuous pheno-
typic trait, here log spVL, changes in a population over a full cycle of reproduction. This ap-
proach is closely related to the method of integral projection models, which has been
developed and widely applied in ecology and population biology [26–28, 36, 37]. The approach
can in principle describe how arbitrary distributions change over time as a function of process-
es such as selection and reproduction. Here we are able to obtain a full analytical description of
the temporal change of the spVL distribution, because all relevant distributions and processes
can be well approximated by Gaussian functions. We also show that our analytical results re-
main robust even for substantial deviations numerical deviations from Gaussian functions (see
Supplementary Materials, Section F). Moreover, the model can be parametrized on the basis of
available data. There are ample data for mean and variance of spVL and also most of the pa-
rameters can be confined to plausible ranges based on the literature.

Our study clearly supports that high heritability is compatible with the observed distribution
of log spVL in HIV carriers. High heritability of spVL does not preclude that also the host ge-
notype has a considerable effect on virus load. However, it does lead to the expectation that
over the course of infection the capacity to induce higher spVL should increase considerably
unless this capacity is only weakly linked to intrahost fitness. This sheds new light onto the
mechanisms controlling viral load. There should be identifiable genetic variation in the virus
population that is associated with viral load, and moreover, the loci associated with control of
viral load should be weakly linked to intrahost fitness. Genome-wide association studies map-
ping viral genetic polymorphisms to variance in log spVL seem a natural approach to test this
prediction. A recent study by Bartha et al. [38] was unable to identify any statistical associa-
tions, but was powered only to detect individual non-synonymous mutations with an effect
size of>4% on heritability. Larger studies will thus be required to identify whether and which
viral polymorphisms are associated with set point viral load.
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Methods
In the following sections we derive an analytical model that describes the change of mean and
variance of spVL in the population of HIV carriers as a function of the heritability of spVL. We
account for the virus and host effects by subdividing the phenotype (i.e. log spVL) into genetic
and environmental/host components. Generally we denote the changes in mean and variance
in the carrier, donor, and recipient populations with the subscripts C, D and R, respectively.
We use greek letters for the parameters of the model and latin letters for the variables. When
referring to the phenotype (i.e. log spVL) we use upper-case letters and when referring to the
genotype we use lower-case letters.

Distribution of log spVL in carrier population
The spVL in a patient is generally determined by viral genetic factors, host genetic factors, the
environment and interactions between these factors. Since only the virus is transmitted from
donors to recipients, we subsume all non-transmissible effects such as the host genetic factors,
environmental effects and all interactions between host, virus and the environment generically
under “environmental effects”, e. The transmissible effects due to the viral genotype are the “ge-
notypic effects”, g. The “phenotype” spVL is then given by g+e.

We assume that the distribution of log spVL in the carrier population is given by a normal
distributionN ðMC;VCÞ, whereMC and VC are the mean and variance, respectively. The trans-
mission potential, defined as the overall probability of transmission of an HIV carrier integrat-
ed over the entire course of the disease, is assumed to be a function of log spVL which can be
well approximated by a normal distributionN ðmo; noÞ (see Fig. 2). Here μo is the log spVL at
which the transmission potential is maximal and νo characterizes how strongly the transmis-
sion potential selects for transmission at μo.

We assume that g and e are independent and normally distributed in the carrier population
withN ðmC; vCÞ andN ðme; neÞ, respectively. HeremC and vC are the variables that describe the
mean and variance of the distribution of viral genotypes in the carrier population. Note that
here the independence of g and e refers to the quantitative contribution of virus and host to
spVL. Importantly, this independence does not imply an absence of virus genotype by host ge-
notype interactions, such as an interaction between a particular viral epitope and a host HLA
molecule. Genotype by genotype interactions are non-transmissible and thus subsumed in e.
The parameters μe and νe describe mean and variance of the distribution of environmental ef-
fects, which comprise host effects, interactions and any non-transmissible effect. The distribu-
tion of phenotype log spVL in the carrier population is then given by a normal distribution
with mean and variance,

MC ¼ mC þ me; and VC ¼ vC þ ne: ð4Þ

Selection of donors
Selection for transmission acts on log spVL, i. e. on the sum of the genotypic and environmen-
tal effects, and is given by the transmission potential. Specifically, the probability of transmis-
sion for a given log spVL, ϕ, is given by (see Fig. 2B),

Sð!Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pno

p e%
ð!%moÞ2

2no : ð5Þ
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Applying the above transmission potential to the carrier population, we find that the geno-
type and phenotype in the donor population are again normally distributed (see Supplementa-
ry Materials, Equations B6 and B7). The donor genotype has mean and variance,

mD ¼ mCðne þ noÞ þ ðmo % meÞvC
vC þ ne þ no

; and vD ¼ vCðne þ noÞ
ne þ no þ vC

: ð6Þ

The donor phenotype has mean and variance (see Supplementary Materials, Equations B8
and B9),

MD ¼ MCno þ moVC

no þ VC

; and VD ¼ VCno
no þ VC

: ð7Þ

Note, that the mean and variance of the environmental effects (i.e. the host effect) is not given
by the differences between the phenotypic and genotypic values, because environment and ge-
notype in the donors are correlated. This is because selection for transmission acts on the sum
of environmental and genotypic effects. In other words selection for transmission selects a sub-
set of viral genotypes and host genotypes, and host and viral genotypes are correlated, because
selection operates on their combined effect.

Transmission to recipients
When the virus is transmitted from the donor to the recipient population, the virus is “har-
vested” from a non-random distribution of environmental effects (and thus also from a non-
random set of hosts). The harvested virus is then redistributed over a random set of new hosts/
environments in the recipient population. Thus all environmental effects in the donor popula-
tion are erased at transmission and the environmental contribution in the recipients is redrawn
fromN ðme; neÞ. To account for the fact that the virus population experiences a strong bottle-
neck from recipient to donor, we assume that the viral genotype is not transmitted exactly
from donor to recipient but instead is assumed to be randomly drawn out of a distribution of
genotypes in the donor patient. Assuming that this distribution is normal with meanmD and
variance νt we obtain that both genotype and
phenotype in the donor population are normally distributed. The recipient genotype has mean
and variance,

mR ¼ mD; and vR ¼ vD þ nt: ð8Þ

The recipient phenotype has mean and variance,

MR ¼ mR þ m0
e ; and VR ¼ vR þ n0e ; ð9Þ

where m0
e and n

0
e are the mean and variance of the host/environmental effects prior to infection.

The environmental effects are redrawn randomly, because they are not inherited from one
transmission to the next. Note, that we assume here that the bottleneck at transmission is neu-
tral. This assumption does not imply that there is no selection at the transmission stage, but
rather that the bottleneck is neutral with regard to the spVL that the transmitted strains will
eventually cause. Any selection at and after transmission on the viral genotypic contribution to
log spVL is subsumed in the next step, intrahost evolution.

Intrahost evolution
After transmission the virus population in the recipient may change in a directed fashion ac-
cording to intrahost evolution. Assuming that the overall change of the viral genotype due to
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intrahost evolution can be approximated by a normal distribution we find that the distribution
of genotypes and phenotypes in the next generation of carriers, C0 is again normal. The distri-
bution of the genotypes has a mean and variance

mC0 ¼ mR þ mi; and vC0 ¼ vR þ ni: ð10Þ

The parameter μi thus describes any genetic change in the virus that affects log spVL across all
patients in the same way. The parameter νi describes genetic changes that affect log spVL in a
manner that is specific to the patient, i.e. it describes the effect of changes of log spVL due to
genetic interactions between virus and host. As the environmental effects comprise the im-
mune response by the host, the mean and variance in environmental effects may change in co-
evolution with the virus through mi

e and n
i
e, respectively. Thus we obtain for mean and variance

of the distribution of phenotypes,

MC0 ¼ mC0 þ m0
e þ mi

e; and VC0 ¼ vC0 þ n0e þ nie: ð11Þ

Note, that any selection for spVL at the transmission bottleneck can now be interpreted as a ge-
notypic change that occurs during intrahost evolution. Thus the overall model is appropriate
both for non-selective and selective bottlenecks.

Heritability
Heritability, h2, is defined as fraction of genotypic variance relative to phenotypic variance in
the carrier population [39]. Thus we have,

h2 ¼ vC
VC

¼ 1% ne
VC

: ð12Þ

Heritability can be estimated in a parent-offspring regression [39], where h2 is equal to the re-
gression slope b. Donor-recipient pairs can be seen as parent-offspring pairs, where care must
be taken since the donors are not randomly selected from the carrier population but are select-
ed according to the transmission potential. Since, however, we are measuring the heritability of
spVL and donors are selected based on spVL, the regression of recipients on selected donors is
equal to heritability of spVL in carriers [24, 39].

Mean and variance of log spVL at equilibrium
We now have a complete analytical description how mean and variance of log spVL change
from the current to the next generation of carriers. The fact that the log spVL that maximizes
the transmission potential and the mean of the distribution of log spVL in the carrier popula-
tions (see Fig. 2 and Fraser et al. [6]) are both around 4.5, we can assume that the process is
roughly at equilibrium. In equilibrium we have that the mean and variance of the distribution
of phenotypes does not change, i.e.MC0 =MC and VC0 = VC. This will be fulfilled if the genetic
and environmental contributions are also at equilibrium, implying in particular that me ¼
m0
e þ mi

e and ne ¼ n0e þ nie (see Supplementary Materials section C.1). Using Equation 12 we can
express the equilibrium mean and variance of log spVL as a function of νe, the variance of the
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contribution of the host/environment to log spVL (see Supplementary Materials, Equations C9
and C10),

~MC ¼ mo þ mi 1þ ne þ no
~VC # ne

! "
; ð13Þ

~VC ¼ nt þ ni
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ne þ no
nt þ ni

r! "
þ ne: ð14Þ

or as a function the heritability h2 (see Supplementary Materials, Equations C12 and C13),

~MC ¼ mo þ mi 1þ ð1# h2Þ~VC þ no
h2 ~VC

! "
; ð15Þ

~VC ¼ nt þ ni
2ðh2Þ2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ðh2Þ2no
nt þ ni

s0

@

1

A: ð16Þ
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High heritability is compatible with the broad distribution
of set point viral load in HIV carriers:
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A Distribution of genotype and phenotype in the different popula-

tions along a full replication cycle

In this section we will derive expressions for the distributions of genotypes g, environment e
and phenotype � in the populations of carriers C, donors D, recipients R and new carriers E.
The phenotype � refers here to the log set point virus load (log spVL). The genotype g refers to5

the virus and the environment e refers to all non-transmissible contribution to log spVL, i.e. the
contributions from the host genotype, from the interactions between host and viral genotypes
and from the environment. Generally, p

x,Y

will denote the distribution of x 2 {g, e,�} in the
population Y 2 {C,D,R,E}. The phenotype �(g, e) is a function of the genotype g and the
environment e. The simplest assumption is that g and e contribute additively,10

�(g, e) = g + e. (A1)

A.1 Carrier population

Let the joint distribution of genotypes and environments in the carrier population be p
ge,C

(g, e).
Assuming that genotypes and environments are independently distributed we have,

p

ge,C

(g, e) = p

g,C

(g)p

e,C

(e). (A2)

The distribution of the phenotype � in the carrier population is,

p

�,C

(�) =

ZZ
p

ge,C

(g, e|�)p
g,C

(g)p

e,C

(e) dgde (A3)

=

ZZ
�(�� (g + e))p

g,C

(g)p

e,C

(e) dgde (A4)

=

Z
p

g,C

(g)p

e,C

(�� g) dg (A5)

= [p

g,C

⇤ p
e,C

](�). (A6)

Here, � is the Dirac-delta function and the asterisk denotes the convolution of the distributions
p

g,C

and p

e,C

.15

A.2 Donor population

Donors are selected from the current distribution of carriers according to their fitness S(�)

which depends on their phenotype � = g + e. The joint distribution of g and e in selected
donors is,

p

ge,D

(g, e) =

1

Z

s

p

ge,C

(g, e)S(g + e) =

1

Z

s

p

g,C

(g)p

e,C

(e)S(g + e), (A7)

where Z

s

is a normalization constant,

Z

s

=

ZZ
p

ge,C

(g, e)S(g + e)dgde =

ZZ
p

g,C

(g)p

e,C

(e)S(g + e)dedg (A8)

=

ZZ
p

g,C

(g)p

e,C

(�� g)S(�)d�dg (A9)

=

Z
p

�,C

(�)S(�)d�. (A10)
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We can then write the joint distribution of genotypes g and phenotypes � in the selected donors,

p

g�,D

(g,�) =

Z
p

ge,D

(g, e)�(�� (g + e))de (A11)

=

1

Z

s

Z
p

g,C

(g)p

e,C

(e)S(g + e)�(�� (g + e))de (A12)

=

1

Z

s

p

g,C

(g)p

e,C

(�� g)S(�). (A13)

The distribution of genotypes irrespective of the phenotype then is p
g,D

(g,�) marginalized over20

�,

p

g,D

(g) =

Z
p

g,D

(g,�)d� =

1

Z

s

Z
p

g,C

(g)p

e,C

(�� g)S(�)d�. (A14)

Similarly, the distribution of the phenotype � in the selected donors is,

p

�,D

(�) =

Z
p

g,D

(g,�)dg =

1

Z

s

Z
p

g,C

(g)p

e,C

(�� g)S(�)dg =

1

Z

s

[p

g,C

⇤ p
e,C

](�)S(�). (A15)

A.3 Recipient population

The distribution of genotypes in the recipient population is shaped by the transmission func-
tion T (g

R

, g

D

), which determines the genotype g

R

of a recipient given that the genotype of the
donor was g

D

. So the distribution of g in the recipients is T integrated over all genotypes in the
donor population,

p

g,R

(g

R

) =

Z
T (g

R

, g

D

)p

g,D

(g

D

) dg

D

(A16)

=

1

Z

s

ZZ
T (g

R

, g

D

)p

g,C

(g

D

)p

e,C

(�� g

D

)S(�) d� dg

D

. (A17)

We can write the distribution of phenotype in the recipient population as,

p

�,R

(�

R

) =

Z
p

g,R

(g

R

)p

e,R

(�

R

� g

R

)dg

R

(A18)
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D
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(A19)
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)dg
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=

Z
p

g,D

(g

D

)[T ⇤ p
e,R

](�

R

, g

D

)dg
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. (A21)

Inserting equation (A14),

p

�,R

(�

R
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1

Z

s

ZZ
[T ⇤ p

e,R

](�, g) p
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A.4 Evolved population (after intrahost evolution)25

Let E
g

(g

E

, g

R

) be the function that evolves the genotype within the host. The distribution of
genotypes in the evolved recipients is then,

p

g,E

(g

E

) =

Z
E
g

(g

E

, g

R

)p

g,R

(g

R

)dg

R

. (A23)

Inserting equation (A17),

p

g,E

(g

E

) =

1

Z

s

ZZZ
E
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(g

E

, g

R

)T (g

R

, g

D

)p

g,C

(g

D

)p
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D
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D

dg
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. (A24)

Due to the evolution of the virus genetics, the host-virus interactions can change. This would
result in a change in the distribution of e in the evolved population. Let E

e

(e

E

, e

R

) be the30

function that evolves the interactions within the host. The distribution of environmental factors
in the evolved recipients is then,

p

e,E

(e

E

) =

Z
E
e

(e

E

, e

R

)p

e,R

(e

R

)de

R

. (A25)

We can write the distributions of phenotypes as,
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B Analytical solution assuming normal distributions

While the above expressions hold for any distribution, the integral cannot be solved in the
general case. If we assume normal distributions for all the different processes, we are able to35

derive closed-form expressions.

B.1 Carriers

We assume that the distributions p
g,C

and p

e,C

are normally distributed,

p

g,C

=

1p
2⇡v

C

exp

⇢
�(m

C

� g)

2

2v

C

�
, (B1)

p

e,C

=

1p
2⇡⌫

e

exp

⇢
�(µ

e

� e)

2

2⌫

e

�
. (B2)

Here, (m
C

, v

C

) and (µ

e

, ⌫

e

) are the means and variances of the genotype and environmental
distributions respectively.
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Since the convolution of two Gaussian distributions with means µ1 and µ2 and variances �

2
140

and �

2
2 is also a Gaussian with mean µ12 = µ1 +µ2 and variance �

2
12 = �

2
1 + �

2
2 , the distribution

of phenotypes in the carrier population p

�,C

is also normal with mean,

M

C

= m

C

+ µ

e

, (B3)

and variance,
V

C

= v

C

+ ⌫

e

. (B4)

B.2 Selected donors

Additionally, the product of two Gaussians is also a Gaussian (not necessarily normalized) with
mean,

µ

p

=

µ1�
2
2 + µ2�

2
1

�

2
1 + �

2
2

,

and variance,45

�

2
p

=

�

2
1�

2
2

�

2
1 + �

2
2

.

Thus p
e

⌘ p

e,C

is symmetric around the mean µ

e

such that,

p

e

(�� g) = p

e

((g + 2µ

e

)� �),

and equation (A14) becomes,
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g,D

(g) =

1

Z

s

p
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(g)[p

e

⇤ S](g + 2µ

e

). (B5)

The convolution of p
e

and S has mean µ

e

+ µ

o

and variance ⌫

e

+ ⌫

o

. If we write,

A(g) = [p

e

⇤ S](g + 2µ

e

),

then A is a Gaussian with variance ⌫

e

+ ⌫

o

and mean µ

e

+µ

o

� 2µ

e

= µ

o

�µ

e

. From the product
formula above, p
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The distribution of phenotypes in the donor population follows from equation (A15) directly.
So, p

�,D

⇠ N (M

D

, V

D

),
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. (B9)
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B.3 Recipients

The transmission function T determines the viral genotype of the recipient, given that the geno-50

type of the donor was g

R

. We assume that T is normally distributed around g

R

with variance
⌫

t

. Thus equation (A17) becomes

p

g,R

(g

R

) =

Z
p

t

(g

R

� g

D

)p

g,D

(g

D

) dg

D

,

where p

t

is a Gaussian with zero mean and variance ⌫

t

. This integral is again a convolution,
such that p

g,R

⇠ N (m

R

, v

R

) with,

m
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= m

D

, (B10)
v
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= v

D

+ v

t

. (B11)

Equivalently for the phenotype distribution in the recipients, from equation (A21),
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where p

t+e

is a Gaussian with mean µ

0
e

and variance v
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+ ⌫

0
e

. Thus the convolution is again
Gaussian and p
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B.4 New carriers

The same as for transmission, we assume that the evolver functions for the viral and environ-55

mental contribution is E
g

⇠ N (g

R

+ µ

i

, ⌫

g

i

) and E
e

⇠ N (e

R

+ µ

i

e

, ⌫

i

e

), respectively. The evolved
population of new carriers has a genotype distribution given by equation (A23).

p

g,E

(g

E

) =

Z
p

Eg

((g

E

� µ

i

)� g

R

)p

g,R

(g

R

)dg

R

,

where p
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The distribution of phenotypes in the evolved population as a function of the distribution in
the recipient population is,
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with f1 a normal distribution with mean µ

0
e

+ µ

i

e

and variance ⌫

0
e

+ ⌫

i

e

. Integrating the convo-
lutions further,
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where f2 is a normal distribution with mean m

R

+ µ

i

and variance v

R

+ ⌫

g

i

.60

The distribution of the phenotype follows from the convolution of f1 and f2, such that p
�,E

⇠
N (M

C

0
, V

C
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C Equilibrium solutions for mean and variance of spVL

Concerning log spVL under the assumption of normal distributions, we have the following ex-
pressions for the distribution of log spVL in the current carriers and the carriers in the following
generation,

�
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⇠ N (m
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e
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e

) , (C1)
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(C2)

The system is said to be in equilibrium when the distribution in phenotype not longer changes
from one generation to the next, thus,
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From equation (C4) we readily find the equilibrium solution for v
C

,

ṽ
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The equilibrium solution of m
C

as a function of v
C

is then,
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If we assume that at equilibrium, the distributions of environmental factors no longer change
from one generation of carriers to the next, then,
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0
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e
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, (C7)
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e
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where the prime signifies the values of mean and variance of environmental factors in the new
generation of carriers. Thus the equilibrium solutions for the phenotype distribution are,

˜

M

C

= m̃
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e

= µ

o

+ µ

i

✓
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⌫

e
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We can express the equilibrium solutions in terms of the heritability h

2, where

⌫

e

= (1� h

2
)

˜

V

C

. (C11)

Inserting into equation (C10),65
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By rearranging the terms we get,
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Squaring both sides yield the quadratic equation,
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Keeping only the non-negative solution and inserting equation (C11) in the expression for ˜

M

C

,
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C.1 Equilibrium of environmental factors

In the main text we argue that there is good evidence that the phenotypic distribution of spVL
is approximately in equilibrium, and thus M

C

0
= M

C

and V

C

0
= V

C

. In the above derivation,
we assume that this also implies an equilibrium of the environmental factors,
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0
e

⌘ µ

0
e
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i

e
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,
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0
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i

e

= ⌫

e

.

8



It is straightforward to see that if both the distributions for g and e are in equilibrium, then70

the distribution for � is also in equilibrium. There are, however, certain special cases that can
be considered where an equilibrium of � does not imply an equilibrium of g and e. Firstly,
the distribution of � might converge faster to an equilibrium value than the distributions of
g and e. This would imply that the contributions of the virus and the environment to the
variance in spVL might still be changing over time. Consequently, heritability may also still75

be changing over time. Secondly, the contributions of g and e may be diverging in opposite
directions, such that the change in the distribution of g cancels out the change in the distribution
of e on the population level. This scenario, however, is unlikely as it requires the viral and
host/environmental factors that influence spVL to increase or decrease indefinitely. Thirdly,
the change in g and e on the population level is described by a stable limit cycle, such that the80

distribution in spVL in the population is constant through time, �(t) = g(t) + e(t) ⌘ ˜

�. While
stable limit cycles can appear in theoretical models, they are rarely observed in real complex
biological systems, due to the delicate balance required between the variables. Furthermore,
this balance has to be maintained on a population level, which would require some sort of
synchrony between the evolutionary changes happening in each individual host. We therefore85

argue that it is most conceivable that the equilibrium of spVL in the population also implies an
equilibrium of the distribution of viral and environmental effects.

D Connection to integral projection models

Our description of the distributions of log spVL change over generations has strong parallels
to integral projection models used in ecology to describe how the composition of population with90

continuous traits changes over discrete time (2–4). In this formalism, the number of individuals
with trait y in generation t+ 1 is given by (2),

n(y, t+ 1) =

Z

⌦
k(y, x)n(x, t)dx. (D1)

Here, k(y, x) is called the kernel and defines the number of offspring with trait y produced by
an offspring of trait x in generation t.
Heritability can be viewed as the regression of offspring on parents, i.e. new carriers on old95

carriers. As we assume the distribution of log spVL in carriers to be normal, the conditional
distribution of log spVL in new carriers given an log spVL current carriers is,

p(�

C

0 |�
C

= ') ⇠ N
 
M

C

+

s
V

C

V

C

0
⇢('�M

C

0
), (1� ⇢

2
)V

C

!
, (D2)

where ⇢ =

p
V

C

0
/V

C

h

2 is the correlation coefficient between carriers in subsequent generations.
Thus the projection kernel k(�

C

0
,�

C

) = p(�

C

0 |�
C

).

E Viral load in Geskus et al. (1)100

We extracted the viral load measurements from the pdf file of Geskus et al. (1) to provide a
further estimate of mean and variance of viral load. This study is also based on the Amsterdam
cohort, but the patient population is not identical to the one used in Fraser et al. (5). Excluding
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measurements that were under the detection limit we estimate a mean of 4.22 logs with a vari-
ance of 0.59. The fitted line in figure S1 shows that the distribution is well approximated by105

a normal distribution, although a statistical test reveals a significant deviation from normality.
Note that the viral loads reported in Geskus et al. (1) are not spVLs, but include also repeated
measurements from individual patients. As a consequence the sample variance is likely an
overestimate of the real variance of spVL.
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Figure S1. Distribution of spVL in donors and recipients in Geskus et al. (1). The plot is confined to viral
load measured between years 1 and 5 after serovonversion.

F Deviations from normality110

F.1 Exact transmission potential

In this section we assess to what degree the normal approximation to the transmission poten-
tial (TP) results in a distribution of spVL in HIV carriers that is different from using the TP as
reported in Fraser et al. (5). We also account for uncertainty in the transmission potential by
accounting for the confidence intervals in the reported TP. To this end we simulate 20 repro-115

duction cycles (i.e. selection for donors, transmission and intrahost evolution) in a population
of N = 10

5 individuals. At each reproduction cycle the number the donors of the N recipients
are selected in the following manner:

(a) The maximum likelihood estimate for the number of infections caused by an individual
with spVL v, as well as the upper and lower bounds of the confidence are determined by120

linear interpolation of the TP from (5).

(b) We then construct a triangular distribution for the probability of x secondary infections at
spVL v between the lower xlo and upper xhi bounds of the confidence interval, such that
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the probability of x secondary infections fulfils p(xlo|v) = p(xhi|v) = 0 and argmax
x

p(x|v) =
xML = TP(v). The value of p(xML) is such that

R
xhi
xlo

p(x)dx = 1.125

p(x|v)

x
xML=TP(v)xlo xhi

(c) The number of secondary infections x

i

at the current reproduction cycle for each indi-
vidual i is then sampled from the constructed distribution for each corresponding spVL
v

i

.

(d) Donors for all new recipients are picked randomly from the donor population with prob-130

ability proportional to x

i

.

The simulated distribution of spVL in carriers after 20 cycles is shown in Figure S2. The normal
approximation is in very good agreement with the simulated distribution.
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Figure S2. Simulated distribution of spVL in HIV carriers after 20 reproduction cycles when using
the exact transmission potential together with the reported confidence intervals. Other parameters are
µ

o

= 4.5, ⌫
o

= 1, µ
e

= 3, ⌫
e

= 1, µ
i

= 0.2, ⌫
i

= 0.3, ⌫
t

= 0.2. The starting population is assumed
normally distributed with mean m

g

= 4 and v

g

= 0.4. The dashed line shows the equilibrium under the
normal approximation to the transmission potential.

F.2 Skewness in intrahost evolution and transmission bottleneck

To test the effect of deviations from normality of the processes of intrahost evolution and the135

transmission bottleneck we sampled from a skew-normal instead of a normal distribution for
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both processes. The skew-normal distribution is characterized by a location, a shape and a
scale parameter that together define mean, variance and skewness of the distribution. If the
shape parameter is zero, the distribution has no skewness and reduces to normal distribution.
To sample from the skew-normal distribution we used the rsnorm function of the VGAM pack-140

age in R (6). Figure S3 shows the effect of skewness in processes of intrahost evolution and the
transmission bottleneck mean, variance and skewness of the spVL distribution in the carrier
population by varying skewness in both processes from -0.9 to 0.9. The key result is that the
analytical results for mean and variance of the spvL distribution remain excellent approxima-
tions even for strong skewness in the processes of intrahost evolution and the transmission145

bottleneck.
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C: skewness in carrier population
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Figure S3. The effect of skewness in the processes of intrahost evolution and the transmission bottle-
neck on mean, variance and skewness of simulated distributions of spVL in carriers. Panel A shows
the relative deviation of the computed mean from the analytical mean (eq. C12), i.e. the difference
of computed and analytical mean divided by the analytical mean. Panel B shows the corresponding
relative deviation from the analytical variance (eq. C13). Panel C shows the skewness of the distri-
bution of spVL in the carrier population. The grey lines show distributions with the corresponding
level of skewness. The color legend applies to all panels. Generally the relative deviation of mean and
variance remains below a few percent even for large skewness in the processes of intrahost evolution
and the transmission bottleneck. Also the absolute level of skewness in the simulated distributions
(panel C) remains below 0.1. Taken together this indicates that even strongly skew processes lead to
small effects on the resulting distribution of spVL in HIV carriers. Parameters of the simulation are
µ

o

= 4.5, ⌫

o

= 1, µ

e

= 3, ⌫

e

= 1, µ

i

= 0.2, ⌫

i

= 0.3, ⌫

t

= 0.2. The population size used in the simulation is
200000.

F.3 Influence of the acute and AIDS phase on the transmission potential

One concern regarding the transmission potential from Fraser et al. (5) is that it neglects trans-
mission from the acute and the AIDS phase of the infection. This is addressed in more detail in
the supplementary material of Fraser et al. (5). As described therein the required correction de-150
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pends on the assumed model of sexual mixing and partner exchange rate. One way to account
for the contribution of these phases is to add a constant term to the transmission potential. This
term was estimated in Fraser et al. (5) to be 0.67 (0.32-1.23 95% c. i.) for primary infection and
0.50 (0.31-0.96 95% c. i.) for pre-AIDS/AIDS. A reasonable range for this constant, c, is thus
[0, 2].155

We performed simulations to compare the equilibrium mean and variance for a transmission
potential with a constant c to the analytical expression obtained assuming c = 0 (see figure
S4). The simulations show that both mean and variance increase with increasing c. Adding a
constant to the transmission potential results in overall weaker selection for viral load. This
leads to a general increase in variance. The mean increases because the transmission potential160

is weaker in opposing the force of intrahost evolution towards higher spVL.
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Figure S4. The effect of adding a contribution of the acute and AIDS phases to the overall transmission
potential. We show the relative increase of mean and standard deviation compared to the analytical
solution (eqs. C12 and C13) as a function of the constant c that is added to the transmission potential.
This constant c spans a realistic range of contributions from the acute and AIDS phase as described in
Fraser et al. (5). Parameters of the simulation are µ

o

= 4.5, ⌫

o

= 1, µ

e

= 3, ⌫

e

= 1, µ

i

= 0.2, ⌫

i

= 0.3, ⌫

t

=

0.2.

Furthermore, we tested the effect a corrected transmission potential by repeating the rejection
sampling procedure using c = 1.2 (see figure S5). Using a corrected transmission potential
generally narrows down the acceptable parameter ranges (because of the effect of increasing
variance and mean shown in figure S4). The areas of highest posterior probability remain in165

regions of high heritability. Thus, in summary, modifying the transmission potential to account
for the contributions of the acute and AIDS phase does not change the two key conclusions,
namely that high heritability is the most parsimonious explanation for the observed mean and
variance of spVL and that the forces of intrahost evolution must be weak.
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Figure S5. Posterior distribution of parameters from the rejection sampler assuming a transmission
potential plus a constant c = 1.2. The figure is analogous to figure 3 in the main text. Since no analytical
solutions are available for the modified transmission potential we performed simulations to measure
the approximate equilibrium mean and variance. Because of the higher computational demands we
sampled 40

0
000 random sets of parameter values from these restricted priors: 0 < ⌫

e

< 0.6; 0 < µ

i

<

0.3; 0 < ⌫

i

, ⌫

t

< 0.15. For comparison, however, we plot the accepted parameters over the same range
as in figure 3 in the main text.
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