11 research outputs found

    Emergence and spread of SARS-CoV-2 lineage B.1.620 with variant of concern-like mutations and deletions

    Get PDF
    Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Delta, Y144Delta, and LLA241/243Delta. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers

    Scribing of a-Si thin-film solar cells with picosecond laser

    No full text
    The thin-film technology is the most promising technology to achieve a significant cost reduction in solar electricity. Laser scribing is an important step to preserve high efficiency of photovoltaic devices on large areas. The high-repetition-rate laser with the pulse duration of 10 ps was applied in selective ablation of multilayer thin-film a-Si solar cells deposited on flexible and rigid substrates. Two types of solar cells with flexible and rigid substrates have been investigated. The first type of solar cells was made of 400 nm a-Si layer coated on both sides with 2 μ\mu m transparent ZnO:Al contact layers deposited by CVD technique on the glass plate. The second type of solar cells was made of a flexible polyimide substrate coated with the Al back-contact, a-Si light absorbing layer and the ITO top-contact. Selection of the right laser wavelength is important to keep the energy coupling in a well defined volume at the interlayer interface. Well-defined shapes of scribes were produced by laser ablation through layers of the solar cell on the glass substrate. Localization of the coupled energy at the inner interface led to the “lift-off” type process rather than evaporation of the top ITO layer when the 355 nm radiation was applied. All laser scribes did not indicate any material melting or other thermal damage caused by laser irradiation. Ultra-short picosecond pulses ensured the high energy input rate into absorbing material therefore peeling of the layers had no influence on the remaining material

    Effects of electrolyte and Ti layers on static and dynamic friction of anodized alumina

    No full text
    Static friction is important for many non-lubricated surfaces, especially when friction is intermittent. Coefficients of Friction (COF) were evaluated on industrial aluminum alloys 1050 and 6082, which were freshly anodized in sulfuric/oxalic or phosphoric acid electrolytes to 60 μm coating thickness. Hard anodizing significantly reduced COF. Under 10 N load friction trends were nearly identical despite sliding velocity variation from 0.02 to 0.5 cm/s, while 1 N load led to higher static COF. Magnetron sputtering was used to deposit Ti layers. Static COF went down from over 0.4 to ~0.2 in 16 nm and 75 nm thick layers, while that of 2.3 μm had no positive effect. Dynamic COF was also similarly reduced, suggesting possible industrial applications

    Surface based cohesive behavior implementation for the strength analysis of glued-in threaded rods in Glulam

    No full text
    The paper presents the analysis of strength and stiffness of metric threaded steel rods glued in glulam obtained by using two different gluing methods. The first method is used when the threaded steel rod is glued into a groove larger than the rod’s diameter, while the second method is applied when the diameter of the groove is smaller than the diameter of the threaded steel rod. The steel rod is covered with glue before it is inserted into the smaller diameter groove. The first method investigates the 2-mm-thick glue-line, while the second method analyses the contact when the groove’s diameter is 2 mm smaller than the outer diameter of the rod. Epoxy-type resin is used for both gluing methods. Different gluing methods present different interactions between the steel rod and glulam which result in different failure modes. The second method presents a plastic failure between the steel rod and glulam caused by the local compression and shear of glulam. The presented studies are made using metric threaded steel rods of diameters M12 and M16. In total, 20 specimens are experimentally tested in tension-to-tension tests performed according to EN 26891. The interaction between glulam and glued steel rods is also investigated using the 3D finite element modelling. The results obtained using the proposed 3D finite element model with different contact conditions between steel and glulam and the failure criterion for timber shear are well in line with the experimental findings

    Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces

    Get PDF
    Optically resonant high-index dielectric metasurfaces featuring Mie-type electric and magnetic resonances are usually fabricated by means of planar technologies, which limit the degrees of freedom in tunability and scalability of the fabricated systems. Therefore, we propose a complimentary post-processing technique based on ultrashort (≤ 10 ps) laser pulses. The process involves thermal effects: crystallization and reshaping, while the heat is localized by a high-precision positioning of the focused laser beam. Moreover, for the first time, the resonant behavior of dielectric metasurface elements is exploited to engineer a specific absorption profile, which leads to a spatially-selective heating and a customized modification. Such technique has the potential to reduce the complexity in the fabrication of non-uniform metasurface-based optical elements. Two distinct cases, a spatial pixelation of a large-scale metasurface and a height modification of metasurface elements, are explicitly demonstrated

    Optimization and stabilization of a kilohertz laser-plasma accelerator

    No full text
    Article No. 033105Laser-plasma acceleration at kilohertz repetition rates has recently been shown to work in two different regimes with pulse lengths of either 30 fs or 3.5 fs. We now report on a systematic study in which a large range of pulse durations and plasma densities were investigated through continuous tuning of the laser spectral bandwidth. Indeed, two laser-plasma accelerator (LPA) processes can be distinguished, where beams of the highest quality, with a charge of 5.4 pC and a spectrum peaked at 2-2.5MeV, are obtained with short pulses propagating at moderate plasma densities. Through particle-in-cell (PIC) simulations, the two different acceleration processes are thoroughly explained. Finally, we proceed to show the results of a 5-h continuous and stable run of our LPA accelerator accumulating more than 18 x 10 6 consecutive shots, with a charge of 2.6 pC and a peaked 2.5MeV spectrum. A parametric study of the influence of the laser driver energy through PIC simulations underlines that this unprecedented stability was obtained thanks to micro-scale density gradient injection. Together, these results represent an important step toward stable laser-plasma accelerated electron beams at kilohertz repetition ratesFizikos katedraFizinių ir technologijos mokslų centrasFizinių ir technologijos mokslų centras, VilniusVytauto Didžiojo universiteta
    corecore