47 research outputs found

    Substance P induces gastric mucosal protection at supraspinal level via increasing the level of endomorphin-2 in rats.

    Get PDF
    The aim of the present study was to analyze the potential role of substance P (SP) in gastric mucosal defense and to clarify the receptors and mechanisms that may be involved in it. Gastric ulceration was induced by oral administration of acidified ethanol in male Wistar rats. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. We found that central (intracerebroventricular) injection of SP (9.3-74pmol) dose-dependently inhibited the formation of ethanol-induced ulcers, while intravenously injected SP (0.37-7.4nmol/kg) had no effect. The mucosal protective effect of SP was inhibited by pretreatment with neurokinin 1-, neurokinin 2-, neurokinin 3- and mu-opioid receptor antagonists, while delta- and kappa-opioid receptor antagonists had no effect. Endomorphin-2 antiserum also antagonized the SP-induced mucosal protection. In the gastroprotective dose range SP failed to influence the gastric motor activity. Inhibition of muscarinic cholinergic receptors, or the synthesis of nitric oxide or prostaglandins significantly reduced the effect of SP. In addition, centrally injected SP reversed the ethanol-induced reduction of gastric mucosal CGRP content. It can be concluded, that SP may induce gastric mucosal protection initiated centrally. Its protective effect is likely to be mediated by endomorphin-2, and vagal nerve may convey the centrally initiated protection to the periphery, where both prostaglandins, nitric oxide and CGRP are involved in mediating this effect

    Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries

    Get PDF
    Capsaicin, a pungent constituent from red chilli peppers, activates sensory nerve fibres via transient receptor potential vanilloid receptors type 1 (TRPV1) to release neuropeptides like calcitonin gene-related peptide (CGRP) and substance P. Capsaicin-sensitive nerves are widely distributed in human and porcine vasculature. In this study, we examined the mechanism of capsaicin-induced relaxations, with special emphasis on the role of CGRP, using various pharmacological tools. Segments of human and porcine proximal and distal coronary arteries, as well as cranial arteries, were mounted in organ baths. Concentration response curves to capsaicin were constructed in the absence or presence of the CGRP receptor antagonist olcegepant (BIBN4096BS, 1 μM), the neurokinin NK1 receptor antagonist L-733060 (0.5 μM), the voltage-sensitive calcium channel blocker ruthenium red (100 μM), the TRPV1 receptor antagonist capsazepine (5 μM), the nitric oxide synthetase inhibitor Nω-nitro-l-arginine methyl ester HCl (l-NAME; 100 μM), the gap junction blocker 18α-glycyrrhetinic acid (10 μM), as well as the RhoA kinase inhibitor Y-27632 (1 μM). Further, we also used the K+ channel inhibitors 4-aminopyridine (1 mM), charybdotoxin (0.5 μM) + apamin (0.1 μM) and iberiotoxin (0.5 μM) + apamin (0.1 μM). The role of the endothelium was assessed by endothelial denudation in distal coronary artery segments. In distal coronary artery segments, we also measured levels of cyclic adenosine monophosphate (cAMP) after exposure to capsaicin, and in human segments, we also assessed the amount of CGRP released in the organ bath fluid after exposure to capsaicin. Capsaicin evoked concentration-dependent relaxant responses in precontracted arteries, but none of the above-mentioned inhibitors did affect these relaxations. There was no increase in the cAMP levels after exposure to capsaicin, unlike after (exogenously administered) α-CGRP. Interestingly, there were significant increases in CGRP levels after exposure to vehicle (ethanol) as well as capsaicin, although this did not induce relaxant responses. In conclusion, the capsaicin-induced relaxations of the human and porcine distal coronary arteries are not mediated by CGRP, NK1, NO, vanilloid receptors, voltage-sensitive calcium channels, K+ channels or cAMP-mediated mechanisms. Therefore, these relaxant responses to capsaicin are likely to be attributed to a non-specific, CGRP-independent mechanism

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Full text link

    The influence of alpha1-adrenoreceptors on neuropeptide release from primary sensory neurons of the lower urinary tract.

    No full text
    OBJECTIVES: Adrenergic alpha(1)-receptors agonists and antagonists have been reported to increase and reduce, respectively, neurogenic inflammatory responses mediated by capsaicin-sensitive sensory neurons. However, the precise role and localization of the alpha(1)-adrenoceptors involved in these effects are not known. METHODS: We have studied in the rat whether functional alpha(1)-adrenoreceptors are expressed in primary sensory neurons, and whether they regulate neurogenic inflammation and nociceptive responses in the urinary bladder. RESULTS: The alpha(1)-adrenoreceptor agonist phenylephrine (1 micromol/l) (1) mobilized intracellular Ca(2+) in cultured lumbar and sacral dorsal root ganglia neurons, (2) caused the release of substance P (SP) from terminals of capsaicin-sensitive sensory neurons from the lumbar enlargement of the dorsal spinal cord and urinary bladder, and (3) increased plasma protein extravasation in the urinary bladder. All these effects were abolished by the alpha(1)-adrenoceptor antagonist alfuzosin (10 micromol/l). Furthermore, alfuzosin (30 microg/kg, i.v.) partially, but significantly, inhibited cyclophosphamide-induced plasma protein extravasation in the rat urinary bladder. Phenylephrine-induced Ca(2+) mobilization in cultured dorsal root ganglia neurons was exaggerated by pretreating the rats in vivo with cyclophosphamide. Finally, cyclophosphamide increased c-fos expression in the rat lumbar spinal cord. Also these in vitro and in vivo effects were inhibited by pretreatment with alfuzosin. CONCLUSIONS: Alpha(1)-adrenoceptors are functionally expressed by capsaicin-sensitive, nociceptive, primary sensory neurons of the rat urinary tract, and their activation may contribute to signal irritative and nociceptive responses arising from the urinary tract. It is possible that, at least, part of the beneficial effects of alpha(1)-adrenoceptor antagonists in the amelioration of storage symptoms in the lower urinary tract derives from their inhibitory effect on neurogenic inflammatory responses

    Montelukast inhibits inflammatory responses in small airways of the Guinea-pig

    No full text
    Increased resistance in the small airways is a major contributor of airway obstruction in asthma. The role of leukotrienes (LT) in determining inflammation and obstruction of small size bronchi is not completely understood. Here, we have examined the effect of the cysteinyl-leukotriene (CysLT 1) receptor antagonist, montelukast, against the bronchoconstriction and inflammatory responses induced by exogenous leukotriene and by allergen challenge in small size (<or=1mm) Guinea-pig bronchi. Montelukast potently (pA(2) 8.3) inhibited the contraction induced by LTD4 in small bronchi taken from na\uefve Guinea-pigs. Furthermore, montelukast reduced the contraction produced by in vitro ovalbumin (OVA) challenge in small size bronchi from sensitized Guinea-pigs. Montelukast (10 microg kg(-1)) also blocked plasma protein extravasation and accumulation of inflammatory cells (eosinophils) induced by OVA challenge in small intra-parenchymal bronchi of OVA sensitized animals. These findings provide additional evidence that CysLT 1 receptor antagonism reduces allergic reactions that cause contractile and inflammatory responses in Guinea-pig small airways during OVA challenge. If the anti-bronchospastic and anti-inflammatory actions of the CysLT 1 receptor antagonists observed in the small airways of Guinea-pigs occur also in man these effects may contribute to the beneficial effects of montelukast in asthmatic patients

    Neurogenic responses mediated by vanilloid receptor-1 (TRPV1) are blocked by the high affinity antagonist, iodo-resiniferatoxin.

    No full text
    (1) Stimulation of the vanilloid receptor-1 (TRPV1) results in the activation of nociceptive and neurogenic inflammatory responses. Poor specificity and potency of TRPV1 antagonists has, however, limited the clarification of the physiological role of TRPV1. (2) Recently, iodo-resiniferatoxin (I-RTX) has been reported to bind as a high affinity antagonist at the native and heterologously expressed rat TRPV1. Here we have studied the ability of I-RTX to block a series of TRPV1 mediated nociceptive and neurogenic inflammatory responses in different species (including transfected human TRPV1). (3) We have demonstrated that I-RTX inhibited capsaicin-induced mobilization of intracellular Ca(2+) in rat trigeminal neurons (IC(50) 0.87 nM) and in HEK293 cells transfected with the human TRPV1 (IC(50) 0.071 nM). (4) Furthermore, I-RTX significantly inhibited both capsaicin-induced CGRP release from slices of rat dorsal spinal cord (IC(50) 0.27 nM) and contraction of isolated guinea-pig and rat urinary bladder (pK(B) of 10.68 and 9.63, respectively), whilst I-RTX failed to alter the response to high KCl or SP. (5) Finally, in vivo I-RTX significantly inhibited acetic acid-induced writhing in mice (ED(50) 0.42 micro mol kg(-1)) and plasma extravasation in mouse urinary bladder (ED(50) 0.41 micro mol kg(-1)). (6) In in vitro and in vivo TRPV1 activated responses I-RTX was approximately 3 log units and approximately 20 times more potent than capsazepine, respectively. This high affinity antagonist, I-RTX, may be an important tool for future studies in pain and neurogenic inflammatory models
    corecore