857 research outputs found
Effects of three-nucleon forces and two-body currents on Gamow-Teller strengths
We optimize chiral interactions at next-to-next-to leading order to
observables in two- and three-nucleon systems, and compute Gamow-Teller
transitions in carbon-14, oxygen-22 and oxygen-24 using consistent two-body
currents. We compute spectra of the daughter nuclei nitrogen-14, fluorine-22
and fluorine-24 via an isospin-breaking coupled-cluster technique, with several
predictions. The two-body currents reduce the Ikeda sum rule, corresponding to
a quenching factor q^2 ~ 0.84-0.92 of the axial-vector coupling. The half life
of carbon-14 depends on the energy of the first excited 1+ state, the
three-nucleon force, and the two-body current
Reactive Control Improvisation
Reactive synthesis is a paradigm for automatically building
correct-by-construction systems that interact with an unknown or adversarial
environment. We study how to do reactive synthesis when part of the
specification of the system is that its behavior should be random. Randomness
can be useful, for example, in a network protocol fuzz tester whose output
should be varied, or a planner for a surveillance robot whose route should be
unpredictable. However, existing reactive synthesis techniques do not provide a
way to ensure random behavior while maintaining functional correctness. Towards
this end, we generalize the recently-proposed framework of control
improvisation (CI) to add reactivity. The resulting framework of reactive
control improvisation provides a natural way to integrate a randomness
requirement with the usual functional specifications of reactive synthesis over
a finite window. We theoretically characterize when such problems are
realizable, and give a general method for solving them. For specifications
given by reachability or safety games or by deterministic finite automata, our
method yields a polynomial-time synthesis algorithm. For various other types of
specifications including temporal logic formulas, we obtain a polynomial-space
algorithm and prove matching PSPACE-hardness results. We show that all of these
randomized variants of reactive synthesis are no harder in a
complexity-theoretic sense than their non-randomized counterparts.Comment: 25 pages. Full version of a CAV 2018 pape
Solar fusion cross sections. II. The pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor
The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease
Hidden spin-texture at topological domain walls drive exchange bias in a Weyl semimetal
Exchange bias is a phenomenon critical to solid-state technologies that
require spin valves or non-volatile magnetic memory. The phenomenon is usually
studied in the context of magnetic interfaces between antiferromagnets and
ferromagnets, where the exchange field of the former acts as a means to pin the
polarization of the latter. In the present study, we report an unusual instance
of this phenomenon in the topological Weyl semimetal Co3Sn2S2, where the
magnetic interfaces associated with domain walls suffice to bias the entire
ferromagnetic bulk. Remarkably, our data suggests the presence of a hidden
order parameter whose behavior can be independently tuned by applied magnetic
fields. For micron-size samples, the domain walls are absent, and the exchange
bias vanishes, suggesting the boundaries are a source of pinned uncompensated
moment arising from the hidden order. The novelty of this mechanism suggests
exciting opportunities lie ahead for the application of topological materials
in spintronic technologies.Comment: Main text: 11 pages, 4 figures. Supplementary information: 7 pages, 6
figures. Supplementary videos:
Solar fusion cross sections II: the pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
FUNCTIONAL MR OF BRAIN ACTIVITY AND PERFUSION IN PATIENTS WITH CHRONIC CORTICAL STROKE
PURPOSE: (1) To determine whether functional MR can reliably map functional deficits in patients with stroke in the primary visual cortex; (2) to determine whether functional MR can reliably map perfusion deficits; and (3) to determine whether functional MR can give any additional diagnostic information beyond conventional MR. METHODS: Seven patients who had had a stroke in their primary visual system were examined using two functional MR techniques: (1) dynamic susceptibility contrast imaging, and (2) cortical activation mapping during full-field visual stimulation. Maps of relative cerebral blood volume and activation were created and compared with visual field examinations and conventional T2-weighted images on a quadrant-by-quadrant basis in five of these patients. RESULTS: Visual field mapping matched with both T2-weighted conventional images and activation mapping of 16 of 18 quadrants. In two quadrants, the activation maps detected abnormalities that were present on the visual field examination but not present on the T2-weighted images nor on the relative cerebral blood volume maps, which may indicate abnormal function without frank infarction. In addition, the activation maps demonstrated decreased activation in extrastriate cortex and had normal T2 signal and relative cerebral blood volume but was adjacent to infarcted primary cortex, mapping in vivo how stroke in one location can affect the function of distant tissue. CONCLUSION: Functional MR techniques can accurately map functional and perfusion deficits and thereby provide additional clinically useful information. Additional studies will be needed to determine the prognostic utility of functional MR in stroke patients
Recommended from our members
Erratum: Consortium biology in immunology: The perspective from the Immunological Genome Project
- …