10 research outputs found

    Pour une démocratie socio-environnementale : cadre pour une plate-forme participative « transition écologique »

    Get PDF
    Contribution publiée in Penser une démocratie alimentaire Volume II – Proposition Lascaux entre ressources naturelles et besoins fondamentaux, F. Collart Dutilleul et T. Bréger (dir), Inida, San José, 2014, pp. 87-111.International audienceL’anthropocène triomphant actuel, avec ses forçages environnementaux et sociaux, est à l’origine de l’accélération des dégradations des milieux de vie sur Terre et de l’accentuation des tensions sociales et géopolitiques. Passer à un anthropocène de gestion équitable, informé et sobre vis-à-vis de toutes les ressources et dans tous les secteurs d’activité (slow anthropocene), impose une analyse préalable sur l’ensemble des activités et des rapports humains. Cette transition dite « écologique », mais en réalité à la fois sociétale et écologique, est tout sauf un ajustement technique de secteurs dits prioritaires et technocratiques. Elle est avant tout culturelle, politique et philosophique au sens propre du terme. Elle est un horizon pour des trajectoires de développement humain, pour des constructions sociales et économiques, censées redéfinir socialement richesse, bien-être, travail etc. La dénomination « transition écologique » est largement véhiculée, mais ses bases conceptuelles ne sont pas entièrement acquises ni même élaborées. Dans ce contexte, les étudiants en première année de Master BioSciences à l’Ecole Normale Supérieure (ENS) de Lyon ont préparé une première étude analytique de ce changement radical et global de société pour mieux comprendre dans quelle société ils souhaitent vivre, en donnant du sens aux activités humaines présentes et à venir. Une trentaine de dossiers sur divers secteurs d’activités et acteurs de la société ont été produits et ont servis de support à cette synthèse. Plus largement, le but est de construire un socle conceptuel et une plate-forme de travail sur lesquels les questions de fond, mais aussi opérationnelles, peuvent être posées et étudiées en permanence. Cette démarche participative est ouverte à la collectivité sur le site http://institutmichelserres.ens-lyon.fr/

    Developing Nucleic Acid-Based Sensors and Actuators

    No full text
    As the field of synthetic biology matures, engineers are tackling increasingly ambitious problems that require the integration of regulatory logic in complex environments. Nucleic acids are attractive molecules for designing sense-and-respond modules: they are ubiquitous, information-rich and interact with each other through simple rules. Here, through two examples, I show that nucleic acids are particularly suited to create programmable molecular tools, in which inputs and outputs are defined independently from each other. In the first half of this thesis, I describe the development of a strategy to design nucleic acid-responsive materials using the CRISPR-associated nuclease Cas12a as a user-programmable sensor and material actuator. I exploit the programmability of Cas12a to actuate hydrogels containing DNA as an anchor for pendant groups or as a structural element. This versatile approach improves on the sensitivity of current DNA-responsive materials while enabling their rapid repurposing toward new sequence targets. In the second half of this thesis, I describe how to engineer programmable single-transcript RNA sensors in vivo, in which adenosine deaminases acting on RNA (ADARs) autocatalytically convert target hybridization into a translational output. This system amplifies the signal from editing by endogenous ADAR through a positive feedback loop. This topology confers high dynamic range, low background, minimal off-target effects, and a small genetic footprint. I envision that the approaches described here have broad applications from basic science to advanced diagnostics and therapeutics, illustrating the great potential of programmable nucleic acid-based controllers.Ph.D

    Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond

    No full text
    In 1961, Jacob and Monod proposed the operon model of gene regulation. At the model's core was the modular assembly of regulators, operators, and structural genes. To illustrate the composability of these elements, Jacob and Monod linked phenotypic diversity to the architectures of regulatory circuits. In this review, we examine how the circuit blueprints imagined by Jacob and Monod laid the foundation for the first synthetic gene networks that launched the field of synthetic biology in 2000. We discuss the influences of the operon model and its broader theoretical framework on the first generation of synthetic biological circuits, which were predominantly transcriptional and posttranscriptional circuits. We also describe how recent advances in molecular biology beyond the operon model—namely, programmable DNA- and RNA-binding molecules as well as models of epigenetic and posttranslational regulation—are expanding the synthetic biology toolkit and enabling the design of more complex biological circuits

    ScvO(2) as a marker to define fluid responsiveness

    No full text
    Definition of the hemodynamic response to volume expansion (VE) could be useful in shocked critically ill patients in absence of cardiac index (CI) measurements. The aim of this study is to evaluate whether central venous oxygen saturation variations (ΔScvO(2)) after VE could be an alternative to classify responders (R) and nonresponders (NR) to volume therapy

    Optically thin ice clouds in Arctic : Formation processes

    No full text
    International audienceArctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be done from these observations, and a first classification has been performed. Results are then compared to satellite data analysis. The new retrieval scheme of Delanoë and Hogan, which combines CloudSat radar and CALIPSO lidar measurements, is used to recover profiles of the properties of ice clouds such as the visible extinction coefficient, the ice water content and the effective radius of ice crystals. Comparisons with in situ airborne measurements allow to validate this retrieval method, and thus the clouds and aerosols properties, for selected cases whereflights are coordinated with the satellite overpasses. A comparison of combined CloudSat/CALIPSO microphysical properties retrievals with airborne ice clouds measurements will be presented. The Lagrangian Particle Dispersion Model FLEXPART is use to study the origin of observed air masses, to be linked with pollution sources

    Optically thin ice clouds in Arctic : Formation processes

    No full text
    International audienceArctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be done from these observations, and a first classification has been performed. Results are then compared to satellite data analysis. The new retrieval scheme of Delanoë and Hogan, which combines CloudSat radar and CALIPSO lidar measurements, is used to recover profiles of the properties of ice clouds such as the visible extinction coefficient, the ice water content and the effective radius of ice crystals. Comparisons with in situ airborne measurements allow to validate this retrieval method, and thus the clouds and aerosols properties, for selected cases whereflights are coordinated with the satellite overpasses. A comparison of combined CloudSat/CALIPSO microphysical properties retrievals with airborne ice clouds measurements will be presented. The Lagrangian Particle Dispersion Model FLEXPART is use to study the origin of observed air masses, to be linked with pollution sources

    Optically thin ice clouds in Arctic : Formation processes

    No full text
    International audienceArctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be done from these observations, and a first classification has been performed. Results are then compared to satellite data analysis. The new retrieval scheme of Delanoë and Hogan, which combines CloudSat radar and CALIPSO lidar measurements, is used to recover profiles of the properties of ice clouds such as the visible extinction coefficient, the ice water content and the effective radius of ice crystals. Comparisons with in situ airborne measurements allow to validate this retrieval method, and thus the clouds and aerosols properties, for selected cases whereflights are coordinated with the satellite overpasses. A comparison of combined CloudSat/CALIPSO microphysical properties retrievals with airborne ice clouds measurements will be presented. The Lagrangian Particle Dispersion Model FLEXPART is use to study the origin of observed air masses, to be linked with pollution sources

    Annuaire 2011-2012

    No full text
    corecore