6 research outputs found

    A T cell-dependent mechanism for the induction of human mucosal homing immunoglobulin A-secreting plasmablasts

    Get PDF
    Mucosal immunoglobulin A (IgA) secreted by local plasma cells (PCs) is a critical component of mucosal immunity. Although IgA class switching can occur at mucosal sites, high-affinity PCs are optimally generated in germinal centers (GCs) in a T cell-dependent fashion. However, how CD4(+) helper T cells induce mucosal-homing IgA-PCs remains unclear. Here, we show that transforming growth factor beta 1 (TGF beta 1) and interleukin 21 (IL-21), produced by follicular helper T cells (Tfh), synergized to generate abundant IgA-plasmablasts (PBs). In the presence of IL-21, TGF beta 1 promoted naive B cell proliferation and differentiation and overrode IL-21-induced IgG class switching in favor of IgA. Furthermore, TGF beta 1 and IL-21 downregulated CXCR5 while upregulating CCR10 on plasmablasts, enabling their exit from GCs and migration toward local mucosa. This was supported by the presence of CCR10(+)IgA(+)PBs in tonsil GCs. These findings show that Tfh contribute to mucosal IgA. Thus, mucosal vaccines should aim to induce robust Tfh responses

    Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.

    No full text
    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines. Nat Commun 2014 Oct 22; 5:5283
    corecore