72 research outputs found
Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.
© 2016 IEEE.Latency-the delay between a users action and the response to this action-is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space-but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of 1 ms from tracker to pixel. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of 1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system-one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours
Compiler-Aided Methodology for Low Overhead On-line Testing
Reliability is emerging as an important design criterion in modern systems due to increasing transient fault rates. Hardware fault-tolerance techniques, commonly used to address this, introduce high design costs. As alternative, software Signature-Monitoring (SM) schemes based on compiler assertions are an efficient method for control-flow-error detection. Existing SM techniques do not consider application-specific-information causing unnecessary overheads. In this paper, compile-time Control-Flow-Graph (CFG) topology analysis is used to place best-suited assertions at optimal locations of the assembly code to reduce overheads. Our evaluation with representative workloads shows fault-coverage increase with overheads close to Assertion- based Control-Flow Correction (ACFC), the method with lowest overhead. Compared to ACFC, our technique improves (on average) fault coverage by 17%, performance overhead by 5% and power-consumption by 3% with equal code-size overhead
Dataflow acceleration of Smith-Waterman with Traceback for high throughput Next Generation Sequencing
Smith-Waterman algorithm is widely adopted bymost popular DNA sequence aligners. The inherent algorithmcomputational intensity and the vast amount of NGS input datait operates on, create a bottleneck in genomic analysis flows forshort-read alignment. FPGA architectures have been extensivelyleveraged to alleviate the problem, each one adopting a differentapproach. In existing solutions, effective co-design of the NGSshort-read alignment still remains an open issue, mainly due tonarrow view on real integration aspects, such as system widecommunication and accelerator call overheads. In this paper, wepropose a dataflow architecture for Smith-Waterman Matrix-filland Traceback alignment stages, to perform short-read alignmenton NGS data. The architectural decision of moving both stages onchip extinguishes the communication overhead, and coupled withradical software restructuring, allows for efficient integration intowidely-used Bowtie2 aligner. This approach delivers×18 speedupover the respective Bowtie2 standalone components, while our co-designed Bowtie2 demonstrates a 35% boost in performance
Ultra low latency dataflow renderer
Reconfigurable hardware has been used before for low latency image synthesis. These are typically low level implementations with tight vertical integration. For example the apparatus of both Regan et al and Ng et al had the tracker driven by the same device performing the rendering. Reconfigurable hardware combined with the dataflow programming model can make application specific rendering hardware cost effective. Our sprite renderer has comparable scope to both prior examples, but our dataflow graph can be adapted to other use cases with an effort comparable to GPU shader programming
EXTRA: Towards the exploitation of eXascale technology for reconfigurable architectures
© 2016 IEEE. To handle the stringent performance requirements of future exascale-class applications, High Performance Computing (HPC) systems need ultra-efficient heterogeneous compute nodes. To reduce power and increase performance, such compute nodes will require hardware accelerators with a high degree of specialization. Ideally, dynamic reconfiguration will be an intrinsic feature, so that specific HPC application features can be optimally accelerated, even if they regularly change over time. In the EXTRA project, we create a new and flexible exploration platform for developing reconfigurable architectures, design tools and HPC applications with run-time reconfiguration built-in as a core fundamental feature instead of an add-on. EXTRA covers the entire stack from architecture up to the application, focusing on the fundamental building blocks for run-time reconfigurable exascale HPC systems: new chip architectures with very low reconfiguration overhead, new tools that truly take reconfiguration as a central design concept, and applications that are tuned to maximally benefit from the proposed run-time reconfiguration techniques. Ultimately, this open platform will improve Europe's competitive advantage and leadership in the field
Comparison of Psychological Distress between Type 2 Diabetes Patients with and without Proteinuria
We investigated the link between proteinuria and psychological distress among patients with type 2 diabetes mellitus (T2DM). A total of 130 patients with T2DM aged 69.1±10.3 years were enrolled in this cross-sectional study. Urine and blood parameters, age, height, body weight, and medications were analyzed, and each patient’s psychological distress was measured using the six-item Kessler Psychological Distress Scale (K6). We compared the K6 scores between the patients with and without proteinuria. Forty-two patients (32.3%) had proteinuria (≥±) and the level of HbA1c was 7.5±1.3%. The K6 scores of the patients with proteinuria were significantly higher than those of the patients without proteinuria even after adjusting for age and sex. The clinical impact of proteinuria rather than age, sex and HbA1c was demonstrated by a multiple regression analysis. Proteinuria was closely associated with higher psychological distress. Preventing and improving proteinuria may reduce psychological distress in patients with T2DM
FASTER: Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration
The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) EU FP7 project, aims to ease the design and implementation of dynamically changing hardware systems. Our motivation stems from the promise reconfigurable systems hold for achieving high performance and extending product functionality and lifetime via the addition of new features that operate at hardware speed. However, designing a changing hardware system is both challenging and time-consuming. FASTER facilitates the use of reconfigurable technology by providing a complete methodology enabling designers to easily specify, analyze, implement and verify applications on platforms with general-purpose processors and acceleration modules implemented in the latest reconfigurable technology. Our tool-chain supports both coarse- and fine-grain FPGA reconfiguration, while during execution a flexible run-time system manages the reconfigurable resources. We target three applications from different domains. We explore the way each application benefits from reconfiguration, and then we asses them and the FASTER tools, in terms of performance, area consumption and accuracy of analysis
- …