10,703 research outputs found

    Implementing Session Centered Calculi

    Get PDF
    Recently, specific attention has been devoted to the development of service oriented process calculi. Besides the foundational aspects, it is also interesting to have prototype implementations for them in order to assess usability and to minimize the gap between theory and practice. Typically, these implementations are done in Java taking advantage of its mechanisms supporting network applications. However, most of the recurrent features of service oriented applications are re-implemented from scratch. In this paper we show how to implement a service oriented calculus, CaSPiS (Calculus of Services with Pipelines and Sessions) using the Java framework IMC, where recurrent mechanisms for network applications are already provided. By using the session oriented and pattern matching communication mechanisms provided by IMC, it is relatively simple to implement in Java all CaSPiS abstractions and thus to easily write the implementation in Java of a CaSPiS process

    Selective decay by Casimir dissipation in fluids

    Full text link
    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in 3D flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in \cite{SaBa1981,SaBa1985}. Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parameterizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies

    Sensitivity of the superconducting state in thin films

    Get PDF
    For more than two decades, there have been reports on an unexpected metallic state separating the established superconducting and insulating phases of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here, we show that for two very different thin-film superconductors, amorphous indium oxide and a single crystal of 2H-NbSe2, this metallic state can be eliminated by adequately filtering external radiation. Our results show that the appearance of temperature-independent, metallic-like transport at low temperatures is sufficiently described by the extreme sensitivity of these superconducting films to external perturbations. We relate this sensitivity to the theoretical observation that, in two dimensions, superconductivity is only marginally stable

    A note on multi-dimensional Camassa-Holm type systems on the torus

    Full text link
    We present a 2n2n-component nonlinear evolutionary PDE which includes the nn-dimensional versions of the Camassa-Holm and the Hunter-Saxton systems as well as their partially averaged variations. Our goal is to apply Arnold's [V.I. Arnold, Sur la g\'eom\'etrie diff\'erentielle des groupes de Lie de dimension infinie et ses applications \`a l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16 (1966) 319-361], [D.G. Ebin and J.E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92(2) (1970) 102-163] geometric formalism to this general equation in order to obtain results on well-posedness, conservation laws or stability of its solutions. Following the line of arguments of the paper [M. Kohlmann, The two-dimensional periodic bb-equation on the diffeomorphism group of the torus. J. Phys. A.: Math. Theor. 44 (2011) 465205 (17 pp.)] we present geometric aspects of a two-dimensional periodic Ό\mu-bb-equation on the diffeomorphism group of the torus in this context.Comment: 14 page

    Extreme Sensitivity of the Superconducting State in Thin Films

    Full text link
    All non-interacting two-dimensional electronic systems are expected to exhibit an insulating ground state. This conspicuous absence of the metallic phase has been challenged only in the case of low-disorder, low density, semiconducting systems where strong interactions dominate the electronic state. Unexpectedly, over the last two decades, there have been multiple reports on the observation of a state with metallic characteristics on a variety of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here we show that for two very different thin-film superconductors, amorphous indium-oxide and a single-crystal of 2H-NbSe2, this metallic state can be eliminated by filtering external radiation. Our results show that these superconducting films are extremely sensitive to external perturbations leading to the suppression of superconductivity and the appearance of temperature independent, metallic like, transport at low temperatures. We relate the extreme sensitivity to the theoretical observation that, in two-dimensions, superconductivity is only marginally stable.Comment: 10 pages, 6 figure

    On the relative expressiveness of higher-order session processes

    Get PDF
    By integrating constructs from the λ-calculus and the π-calculus, in higher-order process calculi exchanged values may contain processes. This paper studies the relative expressiveness of HOπ, the higher-order π-calculus in which communications are governed by session types. Our main discovery is that HO, a subcalculus of HOπ which lacks name-passing and recursion, can serve as a new core calculus for session-typed higher-order concurrency. By exploring a new bisimulation for HO, we show that HO can encode HOπ fully abstractly (up to typed contextual equivalence) more precisely and efficiently than the first-order session π-calculus (π). Overall, under session types, HOπ, HO, and π are equally expressive; however, HOπ and HO are more tightly related than HOπ and π

    Coherent states for the hydrogen atom

    Get PDF
    We construct wave packets for the hydrogen atom labelled by the classical action-angle variables with the following properties. i) The time evolution is exactly given by classical evolution of the angle variables. (The angle variable corresponding to the position on the orbit is now non-compact and we do not get exactly the same state after one period. However the gross features do not change. In particular the wave packet remains peaked around the labels.) ii) Resolution of identity using this overcomplete set involves exactly the classical phase space measure. iii) Semi-classical limit is related to Bohr-Sommerfield quantization. iv) They are almost minimum uncertainty wave packets in position and momentum.Comment: 9 pages, 2 figures, minor change in language and journal reference adde

    MicroRNAs as new player in rheumatoid arthritis

    Full text link
    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression at the post-transcriptional level. Currently, there are 939 mature human miRNA sequences listed in the Sanger updated miRNA registry. There are approximately 1500 predicted miRNAs in the human genome that may regulate the expression of one third of our genes. By controlling the accumulation of the target protein(s) in cells, these regulatory RNA molecules participate in key functions in many physiological networks and their deregulation has been implicated in the pathogenesis of serious human disorders, such as cancer and infection. The implication of miRNAs in immune-mediated disorders such as rheumatoid arthritis (RA) has recently emerged suggesting that miRNA-based therapeutic approaches may have a promising potential in these diseases. Here, we provide an overview of the state-of-the-art on miRNAs in RA, focusing on both systemic and local features of the pathology

    Adsorption of benzene on Si(100) from first principles

    Full text link
    Adsorption of benzene on the Si(100) surface is studied from first principles. We find that the most stable configuration is a tetra-σ\sigma-bonded structure characterized by one C-C double bond and four C-Si bonds. A similar structure, obtained by rotating the benzene molecule by 90 degrees, lies slightly higher in energy. However, rather narrow wells on the potential energy surface characterize these adsorption configurations. A benzene molecule impinging on the Si surface is most likely to be adsorbed in one of three different di-σ\sigma-bonded, metastable structures, characterized by two C-Si bonds, and eventually converts into the lowest-energy configurations. These results are consistent with recent experiments.Comment: 4 pages, RevTex, 2 PostScript gzipped figure
    • 

    corecore