
Implementing Session Centered Calculi?

Lorenzo Bettini1, Rocco De Nicola2, Michele Loreti2

1Dipartimento di Informatica, Università di Torino.
2Dipartimento di Sistemi e Informatica, Università di Firenze.

{bettini,denicola,loreti}@dsi.unifi.it

Abstract. Recently, specific attention has been devoted to the development of
service oriented process calculi. Besides the foundational aspects, it is also in-
teresting to have prototype implementations for them in order to assess usability
and to minimize the gap between theory and practice. Typically, these implemen-
tations are done in Java taking advantage of its mechanisms supporting network
applications. However, most of the recurrent features of service oriented appli-
cations are re-implemented from scratch. In this paper we show how to imple-
ment a service oriented calculus, CaSPiS (Calculus of Services with Pipelines
and Sessions) using the Java framework IMC, where recurrent mechanisms for
network applications are already provided. By using the session oriented and
pattern matching communication mechanisms provided by IMC, it is relatively
simple to implement in Java all CaSPiS abstractions and thus to easily write the
implementation in Java of a CaSPiS process.

1 Introduction

Service-oriented computing is calling for novel computational models and languages
and recently specific attention has been devoted to the development of service oriented
process calculi that can lay the basis for analyzing and experimenting with compo-
nents interactions, safe service composition, and for formalizing and reasoning about
aspects of service level agreements. Recently, many calculi have been proposed and
most of them are based on process algebras enhanced with mechanisms for describing
safe client-service interactions and with operators for composing services. Besides the
foundational aspects, it is also interesting to have prototype implementations of these
calculi, in order to assess their practical usability and to minimize the gap between
theory and practice.

In this paper we show how to implement a service oriented calculus, CaSPiS (Calcu-
lus of Services with Pipelines and Sessions) [3] using a generic Java framework called
IMC (Implementing Mobile Calculi) where recurrent mechanisms for network appli-
cations are already provided. CaSPiS is the evolution of SCC (Serviced Centered Cal-
culus) [2], a calculus for services, that stemmed from a coordinated effort within the
EU funded project SENSORIA [12] that aims at developing a novel, comprehensive ap-
proach to the engineering of software systems for service-oriented computing.

? The work presented in this report has been partially supported by EU Project Software Engi-
neering for Service-Oriented Overlay Computers (SENSORIA, contract IST-3-016004-IP-09)
by the MIUR project EOS DUE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12096244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMC was prompted by the growing number of experiments on process calculi and
by the need of easing the implementation phase and was used as a kind of middleware
for different distributed calculi [1]; it provides the necessary tools for implementing the
run-time system of new languages directly based on distributed calculi (possibly with
code mobility). The aim of IMC was to enable the implementer of a new language to
concentrate on the parts that are really specific of the considered system, and to rely on
the framework for standard mechanisms for distribution and mobility.

IMC provides means for transparent code mobility, for building communication
protocols by composing sub-components dynamically and for managing node topol-
ogy. All these mechanisms are rendered as abstract as possible to ease, e.g., switching
from a specific communication protocol to another, without modifying the other parts
of an application. IMC can be straightforwardly used if no specific advanced feature is
needed; but a user can customize parts of the framework by providing its own imple-
mentations for the interfaces used in the package. Customizations can take advantage
of design patterns such as factory method, abstract factory, template method and strat-
egy [7] that are used throughout the packages.

CaSPiS [3] is a formalism useful for experimenting with service oriented calculi im-
plementations, with advanced features and a clear theoretical foundation. It is dataflow
oriented and makes use of a pipelining operator to model the exchange of informa-
tion between sessions (sequences of structured communications between two peers).
Services are seen as passive objects that can be invoked by clients and service defini-
tions can be seen as specific instances of input prefixed processes. The two endpoints
of a session can communicate by exchanging messages. A fresh shared name is used to
guarantee that messages are exchanged only between partners of the same session, so
that two instances of the same persistent service (that was invoked from two different
sessions) run separately and cannot interfere. The central role assigned to sessions and
the direct use of operators for modeling session interaction renders the logical structure
of programs clearer and leads to a well disciplined service specification language that
guarantees proper handling of session closures and in general simplifies reasoning on
the specified services. The idea of session is not new. Indeed, in [10, 8] identifies a sim-
ple type-regulated interactions in π-like languages. The calculus makes use also of a
new policy for handling (unexpected or programmed) session closures that in the origi-
nal SCC calculus was somehow “rudimental”. Indeed, in SCC closed session as well as
nested subsessions are simply terminated and no information is sent to the counterpart.
In CaSPiS new primitives are introduced for handling session closure and for reacting
to an unexpected session closures.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of CaSPiS, Section 3 presents IMC while in Section 4 the actual implementation of
CaSPiS is presented. Section 5 shows how the proposed implementation can be used for
developing simple services. The final section contains an example of a CaSPiS program
and some concluding remarks.

P,Q ::= ∑i∈I πiPi Guarded Sum
| sk.P Service Definition
| sk.P Service Invocation
| P > Q Pipeline
| close Close
| k.P Listener

π ::= (F) Abstraction
| 〈V 〉 Concretion
| 〈V 〉↑ Return

| †(k) Signal
| r Bk P Session
| I P Terminated Session
| P|Q Parallel Composition
| (νn)P Restriction
| !P Replication

F ::= u | ?x | f (F̃)

V ::= u | f (Ṽ)

Fig. 1. Syntax of full CaSPiS.

2 CaSPiS

CaSPiS (Calculus of Services with Pipelines and Sessions) [3] is a core calculus equipped
with linguistic constructs for handling sessions and that relies on three main concepts:

1. service definition/invocation
2. bi-directional sessioning as a means for structuring client-service interaction
3. pipelining as a means of composing services.

The syntax of CaSPiS is in Figure 1. In the following we will comment the main
constructs of CaSPiS, skipping the standard process algebras operators (such as, e.g.,
non deterministic choice ∑i∈I πiPi, restriction (νn)P, parallel composition P|Q and
replication !P). Interested readers are referred to [3] for further details.

Within CaSPiS, service definitions and service invocations are rendered respectively
as sk1 .P and sk2 .Q where s is a service name, k is the handler used for managing session
closures while P and Q implement the service and the client protocols respectively.

A service definition sk1 .P and a service invocation sk2 .Q running in parallel can
synchronize with each other. As a result, a new, private, session r will be created. The
session has two ends, one at the client’s side where protocol Q is running and one at
the service’s side where protocol P is running. A value produced by a concretion at one
side can be consumed by an abstraction at the other side.

A concretion 〈V 〉P can evolve to P emitting value V . Dually, an abstraction (F)P
is a form of guarded command that relies on pattern-matching: (F)P can evolve to Pσ

retrieving value V , provided pattern F matches value V . Here, the pattern-matching
function match is defined as expected: match(F,V) = σ , if σ is the (uniquely deter-
mined) substitution that permits identifying pattern F and values V .

The return primitive 〈V 〉↑P can be used to return a value outside of the current
session, if the enclosing environment is capable of consuming it. Sessions, service def-
initions and service invocations can of course be nested at arbitrary depth. No activity
can take place under the scope of a dynamic operator (service definition or invocation,
guarded sum, right-hand side term of a pipeline and replication). On the contrary, when

considering non dynamic contexts, including sessions, concurrent activities can take
place at any level of session nesting. Sessions do not constrain in any way actions that
are not value production, consumption or return, that is, service invocation and silent
steps.

CaSPiS is equipped with primitives for handling session closure. These primitives
are useful to garbage-collect terminated sessions and, most importantly, to explicitly
program session termination in order to manage abnormal events or timeouts.

Upon creation of a session, one associates with the session a pair of names, (k1,k2),
identifying a pair of termination handlers services, one for each side. Then:

1. a session side is terminated when its protocol executes the command close ;
2. right after execution of close a signal †(k) is sent to the listener on k (such a listener

will have the syntactic form k.R) running at the opposite side of the session.
3. at the same time, the session side that has executed close will enter a special closing

state denoted by I P, where all subsessions of P will be gradually and automatically
closed.

Information about termination handlers to be used is exchanged by the two sides at
invocation time. Operational rules governing service synchronizations are the follow-
ing:

sk1 .P
s(r)k2

k1−−−−→ r Bk2 P sk2 .P
s(r)k1

k2−−−−→ r Bk1 P

P
s(r)k2

k1−−−−→ P′ Q
s(r)k1

k2−−−−→ Q′

P|Q τ−→ (νr)(P′|Q′)
Hence, process sk1 .Q|sk2 .P evolves to (νr)(r Bk2 Q|r Bk1 P). There, if Q terminates

with close , the termination handler k2 of the callee will be activated. Vice versa, if P
terminates with close the termination handler k1 of the caller will be activated:

P close−−−→ P′

r Bk P τ−→I P′|†(k)
I r Bk P τ−→I P|†(k)

A typical behavior for a listener is that of closing the current session as soon as a signal
†(k) is received. This listener can be rendered as: k.close .

Processes can be composed by using the pipeline operator P > Q. Whenever P
produces a value V that Q can consume, a reduction will trigger a new instantiation Q′

of Q. After this reduction, Q is again ready to consume the next value produced by P,
if any:

P
〈V 〉−−→ P′ Q

(V)−−→ Q′

P > Q τ−→ (P′ > Q) | Q′

2.1 A small example

In this section we will show how CaSPiS can be used for modeling a simple system
used for computing the basic arithmetic operations. In the example, and in the rest of
this paper, we will sometime use standard programming language operators like selec-
tion (if− then− else) or iteration (while−do) that can be implemented as macros in
CaSPiS. Service calculator can be implemented in CaSPiS as follows:

!(νk)calculatork. !("sum",?x,?y)〈"result",x+ y〉
| !("sub",?x,?y)〈"result",x− y〉
| !("mul",?x,?y)〈"result",x∗ y〉
| !("div",?x,?y) if y = 0 then 〈"fail"〉 else 〈"result",x/y〉
| ("off")close
| k.close

after service calculator is invoked, processes for managing basic arithmetic opera-
tions and those for controlling session termination are installed in the established ses-
sion. The processes for arithmetic operations wait for tuples containing the operation
to be computed ("sum", "sub", "mul" and "div") and the two operands (x and y)
and then send to the callee the result. In case of a division operation, message "fail"
is sent to the callee when y is 0. Moreover, when message "off" is received the es-
tablished session is closed. Finally, listener k.close is used for managing unexpected
session closing by the client. To avoid interferences, name k is private. Since this ser-
vice is replicated, it is always available for the invocation.

Service calculator can be used, for instance, for computing Greatest Common
Divisor between two integers using Euclid’s algorithm. Service gcd is defined as fol-
lows:

!gcd.(?x,?y)
if (y = 0) then 〈x〉
else

if (x < y) then gcd.〈y,x〉(?z)〈z〉↑
else P > (?u,?w)gcd.〈u,w〉(?z)〈z〉↑

where process P is defined as follows:

P
4
= (νk′)calculatork′ .〈"sub",x,y〉("result",?z)〈z,y〉↑〈"off"〉|k′.close

3 The IMC framework

We now sketch the main functionalities and classes of the framework, for further de-
tails we refer to the IMC web page http://imc-fi.sf.net). IMC consists of three
main subpackages: protocols, mobility and topology that deal with communica-
tion protocols, code mobility and network topology, respectively. Since mobility is not
employed in CaSPiS, we will ignore this subpackage in the following description.

IMC provides tools to define customized protocol stacks, which are viewed as a
flexible composition of micro-protocols, and permits achieving adaptable forms of com-
munication transparency, which are needed when implementing an infrastructure for

global computing. In IMC, a network protocol is viewed as an aggregation of protocol
states: a high-level communication protocol can indeed be described as a state automa-
ton. Thus, the programmer must simply provide the implementation of each state, put
them in a protocol instance, and then start the protocol. The protocol states abstract
away from the specific communication layers. This permits re-using protocol imple-
mentations independently from the underlying communication means: the same proto-
col can then be executed on a TCP socket, on UDP packets or even on streams attached
to a file (e.g., to simulate a protocol execution). This abstraction is implemented by
specialized streams: Marshaler (for writing) and UnMarshaler (for reading). These
streams provide high-level and encoding-independent representations of information to
be sent or received.

The data in these streams can be “pre-processed” by some customized protocol
layers that remove some information from the input and add some information to the
output: typically this information is a header removed from the input and added to the
output. The base class ProtocolLayer deals with these functionalities, and can be
specialized by the programmer to provide his own protocol layer. These layers are then
composed into a ProtocolStack object that ensures the order of preprocessing passing
through all the layers in the stack. Each layer is independent and the composition of
layers in a protocol stack takes place at run-time. For instance, the programmer can
add a layer that removes a sequence number from an incoming packet and adds the
incremented sequence number into an outgoing packet.

In IMC a participant in a network is an instance of the class Node of the package
topology. A node is also a container of running processes that can be thought of as the
computational units. The framework provides all the means for a process to access the
resources contained in a node and to migrate to other nodes. A process is an instance
of a subclass of the class NodeProcess, and can be added to a node for execution with
the method addProcess of the class Node. A node keeps track of all the processes
that are currently in execution and handles their termination when the node itself is
terminated. The entry point of a NodeProcess is the abstract method execute that
must be implemented in subclasses of NodeProcess. Actually, a process can interact
with the node it is running on only through a NodeProxy, which ensures security by
restricting the node interface visibility to a subset.

The framework provides classes and protocols to deal with sessions, a base concept
of service calculi. The concept of session is logical, since it can then rely on a phys-
ical connection (e.g., TCP sockets) or on a connectionless communication layer (e.g.,
UDP packets). A SessionManager instance will keep track of all the sessions. This
can be used to implement several network topology structures. A Session instance is
identified by two SessionId objects, one indicating the local end and the other one
indicating the remote end. A SessionId contains information about the “location”
or “address” of a node; this concept depends on the specific communication medium:
for instance, for an IP communication it will be a string of the shape IP:port. More-
over, it contains information about the specific low level communication protocol. For
instance, "udp-myhost.com:9999" represents a UDP communication with the host
"myhost.com" on port 9999. Upon establishing a session, the SessionId is used to
determine the low level communication layer. Thus, switching from a communication

layer to another is only a matter of changing the SessionId, while all the other classes
in IMC are independent from this, and do not need to be changed. A Session can be
established by using the method connect, of class Node, specifying the SessionId of
the remote end; a session request can be accepted by using the method accept, by spec-
ifying the local SessionId. These methods return a ProtocolStack object (where the
lowest layer is already set as explained above); this can then be customized by adding
specific ProtocolLayer objects. Finally it can be passed to a Protocol instance that
will run upon it.

IMC provides an implementation of tuples, tuple spaces and the associated pattern
matching retrieval mechanism, thus, the programmer can use the generative and asyn-
chronous communication mechanisms typical of Linda [9]. Notice that the implemen-
tation of tuple spaces in IMC also provides extended operations such as non-blocking
retrieval operations, and retrieval operations that permit reading/removing any tuple
(without specifying its template). Furthermore, there is also a blocking version of the
out operation: this permits implementing a synchronous communication mechanism
still relying on pattern matching (this will be the case of the communication in CaSPiS,
Section 4).

Inside IMC inter-objects communication takes place via the event based function-
alities provided by IMC. In particular, most classes of the framework are endowed with
event generation capabilities (e.g., ProtocolState, ProtocolLayer, Node, etc.). This
permits keeping the classes loosely coupled and communications among objects in the
framework highly flexible. It is then easy to intercept, e.g., new connection requests,
connection failures and session closures. With this respect, the framework notifies the
processes involved in a session about the closure of the session so that they can perform
finalization operations.

4 JCASPIS: CaSPiS implementation in IMC

In this section we present JCASPIS: a Java framework that permits implementing ser-
vice oriented applications based on CaSPiS paradigm. Notice that, CaSPiS operators
like parallel composition and restrictions, can be directly implemented in Java. Indeed,
the former is implemented by using threads, while the latter is obtained by considering
the creation of new objects like, for instance, the instantiation of new services. Other
operators, like non deterministic choice and replication are implemented in JCASPIS
in a restricted way. Indeed, in JCASPIS we will consider only the choice between input
actions while replication will be available only on service definitions.

The implementation of other JCASPIS primitives requires more attention. Indeed,
to allow JCASPIS programs to interact with existing services, implementation of ser-
vice definitions, service invocations and sessions has to take into account existing proto-
cols and technologies for services. IMC provides the Java classes that can be easily used
for handling connections and disconnections among nodes over a network. JCASPIS
specializes these classes in order to handle Service Oriented Protocols. Two kinds of
connection protocols are considered: TCP and HTTP. The former is already provided
by IMC framework, while the latter has been implemented by using Simple Web Server

[13], a Java library, released under the GNU LGPL, providing an extensible HTTP en-
gine.

Three protocols for services interactions have been developed: BYTE CODE, XML
and SOAP. The first one, is used when service interaction is implemented by serializing
Java objects. XML and SOAP protocols are used when service interaction is based on
XML and SOAP messages respectively. Thanks to the modularity of IMC, new service
interaction protocols, as well as new implementations of the one already available, can
be easily integrated within JCASPIS.

Provided protocols are implemented as new layers that permit marshaling/unmar-
shaling data as Java objects or within XML and SOAP messages respectively. BY-
TE CODE protocol is directly developed over the existing Java serialization mecha-
nisms while XML and SOAP implementations are based on two standard J2EE [5]
libraries, Java API for XML Binding (JAXB) [6] and SOAP with Attachments API for
Java (SAAJ) [14].

Java API for XML Binding is a Java library that permits mapping Java classes to
XML representations. Indeed, by using JAXB Java objects can be marshaled into XML
and vice-versa. In other words, JAXB permits sending and receiving Java objects in
XML format, without the need to implement a specific set of XML loading and saving
routines for the program’s class structure. JAXB is one of the APIs in the Java EE
platform, and is part of the Java Web Services Development Pack (JWSDP). It is also
one of the foundations for WSIT. JAXB is part of SE version 1.6.

SOAP with Attachments API for Java (SAAJ) provides primitives for producing
and consuming messages conforming to the SOAP specification and with attachments.
Indeed, SAAJ automates many of the required steps for creating/analyzing SOAP mes-
sages.

In the following we will describe how key notions of CaSPiS are implemented
within IMC.

Services Services are referenced by means of a Service object that contains service
name, the SessionId, which is used for identifying the connection protocol and the
address of the service, and the protocol used for service interaction. For instance, service
pair running at host test.unifi.it:8080 based on XML messages is referenced as:

s = new Service(new IpSessionId ("test.unifi.it", 8080), "pair", "xml");

When a service is invoked, a connection to the remote host providing the requested
service is established. Moreover, the protocol ProtocolStack implementing the re-
quired conversation protocol (i.e., IMC, XML or SOAP) is instantiated and stored
within an object instance of class Connection. This object, which abstracts from a
specific interaction protocol, is used for implementing service interactions.

Processes CaSPiS processes are implemented by classes inherited by the abstract class
Process. The classes derived from Process must provide the implementation of the
entry point method execute, and can use all the methods for exchanging data through
a session and outside the session environment, and for publishing or invoking a ser-
vice. For instance, CaSPiS process (?x)(?y)〈x,y〉, that emits a pair containing two read
values, will be rendered in JCASPIS as follows:

public class PairServiceProcess extends SessionProcess {
public void execute() throws IMCException {

Object first = inAction(); // accept any template
Object second = inAction(); // accept any template
send (new Tuple(first, second));

}
}

Similarly, the process (〈"a"〉|〈"b"〉|(?x)〈x〉↑), that sends two values, retrieves a pair
and emits it in the enclosing context, can be implemented as follows:

public static class PairClient extends ParallelProcess {
public void execute() throws IMCException {

outAction(new Tuple("a"));
outAction(new Tuple("b"));
Tuple t = (Tuple) inAction();
returnAction(t);

}
}

Each process can execute method runProcess(Process p) for activating the ex-
ecution of process p.

Contexts Process instances are executed within a Context. Abstract class Context
provides the following methods for:

– publishing services that will be invoked by remote partners (publish);
– invoking remote services and instantiating local processes implementing service

interactions (call);
– executing basic CaSPiS actions (inAction, outAction and returnAction), for

verifying whether an action can be executed (methods checkIn, checkOut and
checkReturn) and for closing the enclosing session (close).

Contexts can be nested. For this reason Context also keeps track of all its nested
components. By using the IMC mechanisms to react upon session closing, it automati-
cally forwards the session closing operation to all its nested Contexts.

Service Publication and Invocation A service is published by invoking one of the fol-
lowing methods on a context:

– publish(Service s, Process p)
– publish(Service s, Class<? extends Process> c)
– publish(Service s, Class<? extends Process> c, boolean per)

These methods publish a service within the current node. When a request for the pub-
lished service is received, process p (or an instance of class c) is activated. Boolean
parameter per is used for determining if the service is persistent, namely if the service
is still available after the first invocation.

The following code permits publishing the service s defined above:

publish (s, PairServiceProcess.class, true)

A service can be invoked by executing one the following methods:

– call(Service s, Process p)
– call(Service s, Class<? extends Process> c)

when one of these methods is invoked, a connection to the remote host is opened and
a Session (described in the following) is installed within the actual context. Process p
(or an instance of class c) is executed within the new session.

To invoke service s, the following code is executed:

call (s, new PairClient(), true)

The implementation of publish and call methods in Context rely on abstract meth-
ods:

– Connection publish(ServiceName s)
– Connection call(ServiceName s)

The former waits for a request for service s, the latter establishes a connection with the
remote host providing service s. Both methods return an instance of Connection used
for interacting with the caller/callee. Hence, a new session is created and the obtained
object is used for interacting with the remote participant.

JCASPIS provides three implementations of abstract class Context: Execution-
Environment, Session and PipeLine. They define a top level context, a session and
a pipeline, respectively.

Class ExecutionEnvironment is also devoted to wait for incoming connections.
Indeed, its constructor is parametrized with respect to the Internet addresses used for
handling incoming TCP and HTTP connections. Moreover, ExecutionEnvironment
keeps track of the published services. These are stored within a ServiceRegistry.
When a connection request is received, this object is used for determining the process
that has to handle the received service request. Since the same service can be published
with different implementations, ServiceRegistry can be specialized for implement-
ing different service selection policies. At the moment, implementations of a service
are collected in a list, and the first available is selected.

Classes Session and PipeLine provide an implementation for CaSPiS sessions
and pipelines respectively. Sessions are installed within a context when a service is
invoked. Interactions with the remote participants are performed via an instance of
Connection that contains a reference to the ProtocolStack that is created once the
connection is established.

CaSPiS pipelines are implemented by means of PipeLine. This class contains a list
of Abstractions. These are processes parametrized with respect to a Template, i.e.,
an object that permits selecting received messages. Output actions executed by running
processes are intercepted in order to activate the processes corresponding to a matching
template.

In Figure 2 we report the class diagrams of JCASPIS classes described in this sec-
tion. Notice that Process, PipeLine and Session implement interface Activity.
This is the interface that characterize objects that can be executed within a Context.

Activity

Context
activities:List<Activity>
running : boolean

ExecutionEnvironmentPipeline Session

Process
parent:Context

Fig. 2. JCASPIS: Class Diagram

Session Interactions The communication mechanism in CaSPiS is based on structured
values and pattern matching, thus, we will use the tuple space based communication
provided by IMC. The retrieve operation can be performed using the method in-
Action, that can also accept as a parameter a template, which extends abstract class
Template, specifying the data we are willing to receive; the write operation can be per-
formed using the method outAction, that takes as a parameter the message we want
to send. Finally, the method returnAction is used for sending a value just outside the
current session. This method is implemented by invoking method outAction of the
enclosing context.

Classes Session and PipeLine provide different implementations for inAction
and for outAction methods. Session sends and receives messages over the corre-
sponding service connection. PipeLine delegates input to the enclosing context while
catches output for activating a process that will handle the sent message.

A session is closed when method close is invoked. Afterwards, remote connec-
tion and all the nested sessions are closed. Notice that, each action performed within
a session that is terminating, or within one of its subsessions, leads to an exception.
Moreover, to handle unexpected connection closures, each session is equipped with a
termination handler. This is a process that is executed for handling proper session clo-
sure. Termination handler is associated to a session when service is invoked/published.
Indeed, there are methods call/publish described above that take as an extra param-
eter the process or the process class to use as termination handler.

Methods for session interactions cannot be invoked on a top level context or when
a session is closing. For this reason, Context also provides methods that can be used
for verifying whether an action can be executed: methods checkIn, checkOut and
checkReturn.

5 Implementing simple services with JCASPIS

In this section we will show how JCASPIS can be used for implementing simple ser-
vices. In particular, we consider the implementation of the example presented in Sec-
tion 2.1.

Service calculator. The first step for implementing a service in JCASPIS is to define
the messages used for interacting with it. In the case of calculator, we will consider
three classes for implementing the interaction messages:

– Operation, containing a reference to an operation (op) and the arguments (x and
y);

– Result, containing the operation result (result);
– Failure, containing a text indicating the occurred error;

in correspondence of these, we have also to implement the templates used for retrieving
expected messages1. The actual calculator service relies on:

– OperationTemplate, for matching Operation messages;
– ResultTemplate, for retrieving results;
– FailureTemplate, for intercepting computational failure.

The body of the service calculator can be rendered in JCASPIS as follows:

runProcess(new DivProcess());
runProcess(new SubProcess());
runProcess(new SumProcess());
runProcess(new MulProcess());
inAction(new StringTemplate("off"));
close();

This process first activates sub-processes for computing the arithmetic operations (Java
code for SumProcess and DivProcess is reported in Listing 1) and then waits for
a termination string ("off") for closing the actual session. This message is retrieved
using a StringTemplate. This is a template that matches only strings that are equal to
the one passed to the constructor.

Notice that in this case we do not install any handler for intercepting unexpected
session closure. Indeed, default termination handler is used. This is a process that auto-
matically closes current session as soon as the remote participant terminates.

Since service calculator is based on a persistent session (many messages can be
exchanged over the established connection), service calculator is published by using
TCP as connection protocol and BYTE CODE as interaction protocol:

1 Classes for implementing values exchanged after a service invocation and templates to be
used in the established session could be generated automatically from a standard XML textual
representation like, for instance, WSDL.

public class SumProcess extends Process {
public void execute() throws InterruptedException {

while (true) {
Operation op = inAction(new OperationTemplate(Operation.Type.SUM));
outAction(new Result(op.getX ()+op.getY ()));

}
}

}

public class DivProcess extends Process {
public void execute() throws InterruptedException {

while (true) {
Operation op = inAction(new OperationTemplate(Operation.Type.DIV));
if (op.getY ()==0) {

outAction(new Failure("Division by 0!"));
} else {

outAction(new Result(op.getX ()/op.getY ()));
}

}
}

}

Listing 1: Processes for handling sum and div operations

ExecutionEnvironment env = new ExecutionEnvironment(8080, 9000);
Service calc = new Service();
calc.setName("calculator");
calc.setSessionId (new IpSessionId ("localhost", 8080));
calc.setLanguage("BYTE CODE");
env.publish (calc, CalculatorProcess.class, true);

Greatest Common Divisor. Service calculator can be used for computing the Great-
est Common Divisor between two integers. This service, named gcd, operates on two
kinds of messages:

– Pair, which contains the values for which we want to compute GCD;
– Result, which contains the computed GCD.

Protocol of service gcd is implemented in JCASPIS as follows:

Pair p = inAction(new PairTemplate());
int x = p.getX ();
int y = p.getY ();
if (y==0) {

outAction(new Result(x));
}
if (x < y) {

call (gcd, new RequestResponseProcess(new Pair(y,x)));
} else {

Match m = new Match ();
m.add (new IntegerTemplate(), GcdAbstraction.class);
pipeline(new CalculatorClient(new Operation(Operation.SUB, x, y)), m);

}

where RequestResponseProcess, which implements the standard request-response
service interaction pattern, is defined as follows:

public class RequestResponseProcess extends Process {
Object request;
public RequestResponseProcess(Object message) {

this.request = message;
}
public void execute() throws InterruptedException {

outAction(request);
Object response = inAction();
returnAction(response);

}
}

while abstraction GcdAbstraction is defined as follows:

public class GcdAbstraction extends Abstraction {
public void execute() throws InterruptedException {

runProcess(new RequestResponseProcess(getActivationMessage()));
}

}

To guarantee interactions with existing web services, service gcd is developed over
HTTP and SOAP:

ExecutionEnvironment env = new ExecutionEnvironment(8080, 9000);
Service gcd = new Service();
gcd.setName("gcd");
gcd.setSessionId (new HttpSessionId ("localhost", 8080));
gcd.setLanguage("SOAP");
gcd.setServicePackage("org.cmg.caspis.ex.gcdulator:org.cmg.caspis.ex.gcd");
env.publish (gcd, GcdProcess.class, true);

6 Conclusions

The implementation of a language based on a process calculus typically consists of a
run-time system (a sort of abstract machine) implemented in a high level language like

Java, and of a compiler that, given a program written in the programming language
based on the calculus, produces code that uses the run-time system above. In this pa-
per we have illustrated, by means of a case study, a possible methodology to accelerate
the development of prototype implementation of such a run-time system, by relying on
the IMC framework. In particular, we have described JCASPIS: the implementation of
CaSPiS, a calculus that has recently been proposed within the EU project SENSORIA.
The use of IMC has permitted accelerating the development of prototype implemen-
tations while concentrating only on the features that are specific of CaSPiS. Indeed,
JCASPIS composed only by 43 classes and about 1700 lines of code. These classes
provide 289 methods, and the average number of lines per method is 2.5.

Implementing other session based calculi JCASPIS can be easily extended to imple-
ment two other session based calculi that, like CaSPiS, have directly stemmed from
SCC [2], namely SSCC [11] and Conversation Calculus [4]. Notice that, implementa-
tion of SSCC and CC would completely reuse large part of the JCASPIS framework.

SSCC is stream oriented with primitives for inserting/retrieving data in/from streams.
Streams have been easily implemented in IMC by using classes for handling tuple
spaces. The interface of Process and Context can be extended in order to consider
method feed that is used for inserting a value inside a stream. The new context Stream
has been introduced for collecting the values produced by the inner activities.

The Conversation Calculus (CC) has explicit and distinct message passing primi-
tives to model inter and intra session communication. These primitives are based on
communication directions (see [4]). To implement these primitives, Process as well as
Context have been extended to consider communication directions.

As a future work, we plan to develop a high level programming language that, in-
spired by CaSPiS, could be used for programming services and to orchestrate existing
ones. Given a program written in the programming language based on the calculus it
will be translated in a Java program that uses JCASPIS classes. One of the advantages
of this approach is that programs could be verified by using formal tools that are being
developed for CaSPiS.

References

1. L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, and M. Loreti. A Flexible and Modular
Framework for Implementing Infrastructures for Global Computing. In Proc. of 5th IFIP
Int. Conf. on Distributed Applications and Interoperable Systems (DAIS), volume 3543 of
Lect. Notes in Comput. Sci., pages 181–193. Springer, 2005.

2. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a service centered calculus.
In Web Services and Formal Methods, Third International Workshop, WS-FM 2006, volume
4184 of Lect. Notes in Comput. Sci., pages 38–57. Springer, 2006.

3. R. Bruni, M. Boreale, R. De Nicola, and M. Loreti. Sessions and pipelines for structured
services programming. In Proc. of FMOODS’08, Lect. Notes in Comput. Sci. Springer,
2008. To appear.

4. L. Caires and H. Viera. A note on a model for service oriented computation. In ESOP ’08.
Springer, 2008. To appear.

5. J. . E. Edition. http://java.sun.com/javaee/.
6. J. A. for XML Binding. https://jaxb.dev.java.net/.
7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
8. S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions. In Proc. of

ESOP’99, volume 1576 of Lect. Notes in Comput. Sci., pages 74–90. Springer, 1999.
9. D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming

Languages and Systems, 7(1):80–112, 1985.
10. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for

structured communication-based programming. In Proc. of ESOP’98, volume 1381 of Lect.
Notes in Comput. Sci., pages 122–138. Springer, 1998.

11. I. Lanese, F. Martins, A. Ravara, and V. Vasconcelos. Disciplining orchestration and conver-
sation in service-oriented computing. In SEFM ’07, pages 305–314. IEEE Computer Society
Press, 2007.

12. Sensoria Project. Public web site. http://sensoria.fast.de/.
13. Simple Web Server. http://simpleweb.sourceforge.net/.
14. S. with Attachments API for Java. https://saaj.dev.java.net/.

