56 research outputs found

    Pre‐breakup extension in the northern North Sea defined by complex strain partitioning and heterogeneous extension rates

    Get PDF
    The early stages of continental rifting are accommodated by the growth of upper‐crustal normal fault systems that are distributed relatively evenly across the rift width. Numerous fault systems define fault arrays , the kinematics of which are poorly understood due to a lack of regional studies drawing on high‐quality subsurface data. Here we investigate the long‐term (~150 Myr) growth of a rift‐related fault array in the East Shetland Basin, northern North Sea, using a regionally extensive subsurface dataset comprising 2D and 3D seismic reflection surveys and 107 boreholes. We show that rift‐related strain during the pre‐Triassic‐to‐Middle Triassic was originally distributed across several sub‐basins. The Middle‐to‐Late Triassic saw a decrease in extension rate (~14 m/Myr) as strain localized in the western part of the basin. Early Jurassic strain initially migrated eastwards, before becoming more diffuse during the main, Middle‐to‐Late Jurassic rift phase. The highest extension rates (~89 m/Myr) corresponded with the main rift event in the East Shetland Basin, before focusing of strain within the rift axis and ultimate abandonment of the East Shetland Basin in the Early Cretaceous. We also demonstrate marked spatial variations in timing and magnitude of slip along‐strike of major fault systems during this protracted rift event. Our results imply that strain migration patterns and extension rates during the initial, pre‐breakup phase of continental rifting may be more complex than previously thought; this reflects temporal and spatial changes in both thermal and mechanical properties of the lithosphere, in addition to varying extension rates

    Geometry and architecture of faults in a syn-rift normal fault array: the Nukhul half-graben, Suez rift, Egypt

    No full text
    Abstract not availablePaul Wilson, Rob L. Gawthorpe, David Hodgetts, Franklin Rarity, Ian R Shar

    Submarine slope processes in rift-margin basins, Miocene Suez Rift, Egypt

    No full text
    Lorna J. Strachan, Frank Rarity, Robert L. Gawthorpe, Paul Wilson, Ian Sharp and Dave Hodgett

    Modelling syntectonic sedimentation: combining a discrete element model of tectonic. Deformation and process-based sedimentary Model in 3D.

    Get PDF
    This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments

    LiDAR-based digital outcrops for sedimentological analysis: workflows and techniques

    No full text
    Recent developments in workflows and techniques for the integration and analysis of terrestrial LiDAR (Light Detection And Ranging) and conventional outcrop datasets are demonstrated through three case studies. The first study shows the power of three-dimensional (3D) data visualization, in association with an innovative surface-modelling technique, for establishing large-scale 3D stratigraphical frameworks. The second presents an approach to derive reliable geometrical data on sediment-body geometries, whereas the third presents a new technique to quantify the proportions, distributions and variability of sedimentary facies directly from outcrop. In combination, these techniques provide essential conditioning data for geocellular and stochastic facies modelling. Built upon robust, reproducible and quantitative data, the resultant models combine realistic 3D geological architectures with sufficient quantities of reliable numerical data required for stable statistical analysis and establishing uncertainty. Together this new information provides detailed understanding and quantification of the 3D complexity of the sedimentary systems in question, thus offering insights of value for predicting the subsurface anatomy of analogous petroleum systems. As such, use of LiDAR, when combined with conventional field geology, offers a powerful tool for quantitative outcrop analysis, tightly constraining 3D structural and stratigraphical interpretations, and effectively increasing the statistical significance of outcrop analogues for reservoir characterization.F. Rarity, X. M. T. Van Lanen, D. Hodgetts, R. L. Gawthorpe, P. Wilson, I. Fabuel-Perez, & J. Redfer

    Grain-Size Analysis of the Late Pleistocene Sediments in the Corinth Rift: Insights into Strait Influenced Hydrodynamics and Provenance of an Active Rift Basin

    No full text
    Grain-size analysis of the sediments in borehole M0079A, which is located in the Corinth Rift, was used to explore hydrodynamic conditions and provenance in the Late Pleistcene Corinth Rift. Grain-size populations that were sensitive to the sedimentary environments were characterized by frequency distribution, particle size-standard deviation, and probability cumulative curves. Our results indicate the grain-size population component in the range 0.15-0.25 ÎŒm may be used as a sensitive proxy for hyperpycnal flows, which have commonly been triggered by river floods from the southern margin of the rift since ca. 0.593–0.613 Ma. The high-density plumes derived from the longer rivers of the southern rift that were prevalent before ca. 0.593–0.613 Ma. When sediment is supplied as hemipelagic deposition, the proportion of the total grain-size population that is in the 0.3–0.5 ÎŒm range becomes an index for suspension fall-out deposits. The core shows coarser sediments during the marine periods and this may be linked to the current circulation related to the Ishtmia Strait opening. The study thus illustrates how the establishment of interbasinal straits can influence the details of sedimentary hydrodynamics in the deep-water axis of an adjacent depocenter
    • 

    corecore