478 research outputs found

    Bond Orientational Order, Molecular Motion and Free Energy of High Density DNA Mesophases

    Full text link
    By equilibrating condensed DNA arrays against reservoirs of known osmotic stress and examining them with several structural probes, it has been possible to achieve a detailed thermodynamic and structural characterization of the change between two distinct regions on the liquid crystalline phase digram: a higher-density hexagonally packed region with long-range bond orientational order in the plane perpendicular to the average molecular direction; and a lower-density cholesteric region with fluid-like positional order. X-rays scattering on highly ordered DNA arrays at high density and with the helical axis oriented parallel to the incoming beam showed a six-fold azimuthal modulation of the first order diffraction peak that reflects the macroscopic bond-orientational order. Transition to the less-dense cholesteric phase through osmotically controlled swelling shows the loss of this bond orientational order that had been expected from the change in optical birefringence patterns and that is consistent with a rapid onset of molecular positional disorder. This change in motion was previously inferred from intermolecular force measurements and is now confirmed by 31P\rm ^{31}P NMR. Controlled reversible swelling and compaction under osmotic stress, spanning a range of densities between ∼120\sim 120 mg/ml to ∼600\sim 600 mg/ml, allows measurement of the free energy changes throughout each phase and at the phase transition, essential information for theories of liquid-crystalline states.Comment: 14 pages, 3 figures in gif format available at http://abulafia.mgsl.dcrt.nih.gov/pics.html E-mail: [email protected]

    Structure and hydration of membranes embedded with voltage-sensing domains.

    Get PDF
    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field

    Permeability of membranes in the liquid ordered and liquid disordered phases

    Get PDF
    The functional significance of ordered nanodomains (or rafts) in cholesterol rich eukaryotic cell membranes has only begun to be explored. This study exploits the correspondence of cellular rafts and liquid ordered (L-o) phases of three-component lipid bilayers to examine permeability. Molecular dynamics simulations of L-o phase dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol show that oxygen and water transit a leaflet through the DOPC and cholesterol rich boundaries of hexagonally packed DPPC microdomains, freely diffuse along the bilayer midplane, and escape the membrane along the boundary regions. Electron paramagnetic resonance experiments provide critical validation: the measured ratio of oxygen concentrations near the midplanes of liquid disordered (L-d) and L-o bilayers of DPPC/DOPC/cholesterol is 1.75 +/- 0.35, in very good agreement with 1.3 +/- 0.3 obtained from simulation. The results show how cellular rafts can be structurally rigid signaling platforms while remaining nearly as permeable to small molecules as the L-d phase

    Theory of Lipid Polymorphism: Application to Phosphatidylethanolamine and Phosphatidylserine

    Get PDF
    We introduce a microscopic model of a lipid with a charged headgroup and flexible hydrophobic tails, a neutral solvent, and counter ions. Short-ranged interactions between hydrophilic and hydrophobic moieties are included as are the Coulomb interactions between charges. Further, we include a short-ranged interaction between charges and neutral solvent, which mimics the short-ranged, thermally averaged interaction between charges and water dipoles. We show that the model of the uncharged lipid displays the usual lyotropic phases as a function of the relative volume fraction of the headgroup. Choosing model parameters appropriate to dioleoylphosphatidylethanolamine in water, we obtain phase behavior which agrees well with experiment. Finally we choose a solvent concentration and temperature at which the uncharged lipid exhibits an inverted hexagonal phase and turn on the headgroup charge. The lipid system makes a transition from the inverted hexagonal to the lamellar phase which is related to the increased waters of hydration correlated with the increased headgroup charge via the charge-solvent interaction. The polymorphism displayed upon variation of pH mimics that of the behavior of phosphatidylserine.Comment: Submitte

    Sterols sense swelling in lipid bilayers

    Full text link
    In the mimetic membrane system of phosphatidylcholine bilayers, thickening (pre-critical behavior, anomalous swelling) of the bilayers is observed, in the vicinity of the main transition, which is non-linear with temperature. The sterols cholesterol and androsten are used as sensors in a time-resolved simultaneous small- and wide angle x-ray diffraction study to investigate the cause of the thickening. We observe precritical behavior in the pure lipid system, as well as with sterol concentrations less than 15%. To describe the precritical behavior we introduce a theory of precritical phenomena.The good temperature resolution of the data shows that a theory of the influence of fluctuations needs modification. The main cause of the critical behavior appears to be a changing hydration of the bilayer.Comment: 11 pages, 7 ps figures included, to appear in Phys.Rev.

    Neutral fluorescence probe with strong ratiometric response to surface charge of phospholipid membranes

    Get PDF
    AbstractWe report on dramatic differences in fluorescence spectra of 4′-dimethylamino-3-hydroxyflavone (probe F) studied in phospholipid membranes of different charge (phosphatidyl glycerol, phosphatidylcholine (PC), their mixture and the mixture of PC with a cationic lipid). The effect consists in variations of relative intensities at two well-separated band maxima at 520 and 570 nm belonging to normal (N*) and tautomer (T*) excited states of flavone chromophore. Based on these studies we propose a new approach to measure electrostatic potential at the surface layer of phospholipid membranes, which is based on potential-dependent changes of bilayer hydration and involves very sensitive and convenient ratiometric measurements in fluorescence emission
    • …
    corecore