24 research outputs found

    Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-γ

    Get PDF
    Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-γ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis nor secretion of IFN-γ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe

    Finite element modeling of optic chiasmal compression

    No full text
    Background: The precise mechanism of bitemporal hemi-anopia is still not clear. Our study investigated the mechanism of bitemporal hemianopia by studying the biomechanics of chiasmal compression caused by a pitui-tary tumor growing below the optic chiasm.Methods: Chiasmal compression and nerve fiber interaction in the chiasm were simulated numerically using finite element modeling software. Detailed mechanical strain distributions in the chiasm were obtained to help understand the mechanical behavior of the optic chiasm. Nerve fiber models were built to determine the relative difference in strain experienced by crossed and uncrossed nerve fibers.Results: The central aspect of the chiasm always experi-enced higher strains than the peripheral aspect when the chiasm was loaded centrally from beneath. Strains in the nasal (crossed) nerve fibers were dramatically higher than in temporal (uncrossed) nerve fibers.Conclusions: The simulation results of the macroscopic chiasmal model are in agreement with the limited experimental results available, suggesting that the finite element method is an appropriate tool for analyzing chiasmal compression. Although the microscopic nerve fiber model was unvalidated because of lack of experimental data, it provided useful insights into a possible mechanism of bitemporal hemianopia. Specif-ically, it showed that the strain difference between crossed and uncrossed nerve fibers may account for the selective nerve damage, which gives rise to bitemporal hemianopia

    Control of Cell Cycle Entry and Apoptosis in B Lymphocytes Infected by Epstein-Barr Virus

    No full text
    Infection of human B cells with Epstein-Barr virus (EBV) results in activation of the cell cycle and cell growth. To interpret the mechanisms by which EBV activates the cell, we have assayed many proteins involved in control of the G(0) and G(1) phases of the cell cycle and regulation of apoptosis. In EBV infection most of the changes, including the early induction of cyclin D2, are dependent on expression of EBV genes, but an alteration in the E2F-4 profile was partly independent of viral gene expression, presumably occurring in response to signal transduction activated when the virus binds to its receptor, CD21. By comparing the expression of genes controlling apoptosis, including those encoding several members of the BCL-2 family of proteins, the known relative resistance of EBV-immortalized B-cell lines to apoptosis induced by low serum was found to correlate with expression of both BCL-2 and A20. A20 can be regulated by the NF-κB transcription factor, which is known to be activated by the EBV LMP-1 protein. Quantitative assays demonstrated a direct temporal relationship between LMP-1 protein levels and active NF-κB during the time course of infection

    Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: Implications for latency

    No full text
    A quantitative algorithm was developed and applied to predict target genes of microRNAs encoded by herpesviruses. Although there is almost no conservation among microRNAs of different herpesvirus subfamilies, a common pattern of regulation emerged. The algorithm predicts that herpes simplex virus 1, human cytomegalovirus, Epstein–Barr virus, and Kaposi's sarcoma-associated herpesvirus all employ microRNAs to suppress expression of their own genes, including their immediate-early genes. In the case of human cytomegalovirus, a virus-coded microRNA, miR-112-1, was predicted to target the viral immediate-early protein 1 mRNA. To test this prediction, mutant viruses were generated that were unable to express the microRNA, or encoded an immediate-early 1 mRNA lacking its target site. Analysis of RNA and protein within infected cells demonstrated that miR-UL112-1 inhibits expression of the major immediate-early protein. We propose that herpesviruses use microRNA-mediated suppression of immediate-early genes as part of their strategy to enter and maintain latency
    corecore